These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16860360)

  • 61. Adaptive Pulse Wave Imaging: Automated Spatial Vessel Wall Inhomogeneity Detection in Phantoms and in-Vivo.
    Apostolakis IZ; Karageorgos GM; Nauleau P; Nandlall SD; Konofagou EE
    IEEE Trans Med Imaging; 2020 Jan; 39(1):259-269. PubMed ID: 31265387
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A 2D non-invasive ultrasonic method for simultaneous measurement of arterial strain and flow pattern.
    Niu L; Qian M; Song R; Meng L; Liu X; Zheng H
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):323-9. PubMed ID: 22681611
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves.
    Li GY; He Q; Xu G; Jia L; Luo J; Cao Y
    J Biomech; 2017 Jan; 51():97-104. PubMed ID: 27989313
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lateral speckle tracking using synthetic lateral phase.
    Chen X; Zohdy MJ; Emelianov SY; O'Donell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):540-50. PubMed ID: 15217232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3D reconstruction of ultrasound scanned data for tissue mimicking material sample.
    Zhu H; Yang P; Yao T
    Biomed Mater Eng; 2014; 24(6):2771-81. PubMed ID: 25226982
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasonic scanning of straight micro tools in soft biological tissues: Methodology and implementation.
    Mari JM; Cachard C
    Ultrasonics; 2011 Jul; 51(5):632-8. PubMed ID: 21310456
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility.
    Nauleau P; Apostolakis I; McGarry M; Konofagou E
    Phys Med Biol; 2018 May; 63(11):115006. PubMed ID: 29658889
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.
    Passmore E; Pandy MG; Graham HK; Sangeux M
    Ultrasound Med Biol; 2016 Feb; 42(2):619-23. PubMed ID: 26639301
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force.
    Dutta P; Urban MW; Le Maître OP; Greenleaf JF; Aquino W
    Phys Med Biol; 2015 Jul; 60(13):5279-96. PubMed ID: 26109582
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials.
    Wu Z; Taylor LS; Rubens DJ; Parker KJ
    Phys Med Biol; 2004 Mar; 49(6):911-22. PubMed ID: 15104315
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of key parameters on the accuracy and precision of local pulse wave velocity measurement by ultrasound imaging.
    Huang C; Ren T; Luo J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2877-80. PubMed ID: 25570592
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Usefulness of ultrasonic strain measurement-based shear modulus reconstruction for diagnosis and thermal treatment.
    Sumi C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1670-89. PubMed ID: 16382619
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vivo non-invasive high resolution MR-based method for the determination of the elastic modulus of arterial vessels.
    Taviani V; Sutcliffe MP; Wong P; Li ZY; Young V; Graves MJ; Gillard JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5569-72. PubMed ID: 19163979
    [TBL] [Abstract][Full Text] [Related]  

  • 74. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.
    Coolbaugh CL; Bush EC; Caskey CF; Damon BM; Towse TF
    J Appl Physiol (1985); 2016 Oct; 121(4):849-857. PubMed ID: 27516540
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Resolving the lateral component of blood flow velocity based on ultrasound speckle size change with scan direction and speed.
    Xu T; Bashford GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():491-4. PubMed ID: 19963464
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):52-63. PubMed ID: 16471432
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials.
    Bossy E; Talmant M; Defontaine M; Patat F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):71-9. PubMed ID: 14995018
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Measurement of regional pulse wave velocity using very high frame rate ultrasound.
    Hasegawa H; Hongo K; Kanai H
    J Med Ultrason (2001); 2013 Apr; 40(2):91-8. PubMed ID: 27277096
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fetal aortic distensibility, compliance and pulse pressure assessment during the second half of pregnancy.
    Struijk PC; Migchels H; Mathews JV; Stewart PA; Clark EB; de Korte CL; Lotgering FK
    Ultrasound Med Biol; 2013 Nov; 39(11):1966-75. PubMed ID: 23988265
    [TBL] [Abstract][Full Text] [Related]  

  • 80. New microembolus size estimator for peripheral blood vessels.
    Zmigrodzki J; Kaluzynski K
    Ultrasound Med Biol; 2012 Mar; 38(3):454-67. PubMed ID: 22305059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.