These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 16860423)
21. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk. Røssland E; Langsrud T; Sørhaug T Int J Food Microbiol; 2005 Aug; 103(1):69-77. PubMed ID: 16084267 [TBL] [Abstract][Full Text] [Related]
22. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach. Wijnands LM; Pielaat A; Dufrenne JB; Zwietering MH; van Leusden FM J Appl Microbiol; 2009 Jan; 106(1):258-67. PubMed ID: 19120618 [TBL] [Abstract][Full Text] [Related]
23. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Guérin A; Dargaignaratz C; Broussolle V; Clavel T; Nguyen-The C Food Microbiol; 2016 Oct; 59():119-23. PubMed ID: 27375252 [TBL] [Abstract][Full Text] [Related]
24. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Van Opstal I; Vanmuysen SC; Wuytack EY; Michiels CW Commun Agric Appl Biol Sci; 2003; 68(3):7-10. PubMed ID: 14702650 [No Abstract] [Full Text] [Related]
25. A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration. Membré JM; Amézquita A; Bassett J; Giavedoni P; Blackburn Cde W; Gorris LG J Food Prot; 2006 Jan; 69(1):118-29. PubMed ID: 16416909 [TBL] [Abstract][Full Text] [Related]
26. Microbial growth in dry grain food (Sunsik) beverages prepared with water, milk, soymilk, or honey-water. Jung JH; Lee SY J Food Sci; 2010 May; 75(4):M239-42. PubMed ID: 20546416 [TBL] [Abstract][Full Text] [Related]
27. Evaluation and control of the risk of foodborne pathogens and spoilage bacteria present in Awa-Uirou, a sticky rice cake containing sweet red bean paste. Okahisa N; Inatsu Y; Juneja VK; Kawamoto S Foodborne Pathog Dis; 2008 Jun; 5(3):351-9. PubMed ID: 18564913 [TBL] [Abstract][Full Text] [Related]
28. Development of a time-to-detect growth model for heat-treated Bacillus cereus spores. Daelman J; Sharma A; Vermeulen A; Uyttendaele M; Devlieghere F; Membré JM Int J Food Microbiol; 2013 Aug; 165(3):231-40. PubMed ID: 23796655 [TBL] [Abstract][Full Text] [Related]
29. Environment driven cereulide production by emetic strains of Bacillus cereus. Apetroaie-Constantin C; Shaheen R; Andrup L; Smidt L; Rita H; Salkinoja-Salonen M Int J Food Microbiol; 2008 Sep; 127(1-2):60-7. PubMed ID: 18625533 [TBL] [Abstract][Full Text] [Related]
30. Phenotypic and genotypic characterisation of Bacillus cereus isolates from Bangladeshi rice. Haque A; Russell NJ Int J Food Microbiol; 2005 Jan; 98(1):23-34. PubMed ID: 15617798 [TBL] [Abstract][Full Text] [Related]
31. Psychrotrophic strains of Bacillus cereus producing enterotoxin. van Netten P; van De Moosdijk A; van Hoensel P; Mossel DA; Perales I J Appl Bacteriol; 1990 Jul; 69(1):73-9. PubMed ID: 2118898 [TBL] [Abstract][Full Text] [Related]
32. Bacillus cereus in refrigerated milk submitted to different heat treatments. Aires GS; Walter EH; Junqueira VC; Roig SM; Faria JA J Food Prot; 2009 Jun; 72(6):1301-5. PubMed ID: 19610345 [TBL] [Abstract][Full Text] [Related]
33. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186 [TBL] [Abstract][Full Text] [Related]
34. Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth of Bacillus cereus. Ceuppens S; Van de Wiele T; Rajkovic A; Ferrer-Cabaceran T; Heyndrickx M; Boon N; Uyttendaele M Int J Food Microbiol; 2012 Apr; 155(3):241-6. PubMed ID: 22436640 [TBL] [Abstract][Full Text] [Related]
35. Quantifying the combined effects of the heating time, the temperature and the recovery medium pH on the regrowth lag time of Bacillus cereus spores after a heat treatment. Gaillard S; Leguérinel I; Savy N; Mafart P Int J Food Microbiol; 2005 Nov; 105(1):53-8. PubMed ID: 16055220 [TBL] [Abstract][Full Text] [Related]
36. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. Afchain AL; Carlin F; Nguyen-The C; Albert I Int J Food Microbiol; 2008 Nov; 128(1):165-73. PubMed ID: 18805600 [TBL] [Abstract][Full Text] [Related]
37. Effect of carbon dioxide on the growth of Bacillus cereus spores in milk during storage. Werner BG; Hotchkiss JH J Dairy Sci; 2002 Jan; 85(1):15-8. PubMed ID: 11860107 [TBL] [Abstract][Full Text] [Related]
38. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. van der Voort M; García D; Moezelaar R; Abee T Int J Food Microbiol; 2010 Apr; 139(1-2):108-15. PubMed ID: 20153067 [TBL] [Abstract][Full Text] [Related]
39. Combined effects of pH, nisin, and temperature on growth and survival of psychrotrophic Bacillus cereus. Jaquette CB; Beuchat LR J Food Prot; 1998 May; 61(5):563-70. PubMed ID: 9709228 [TBL] [Abstract][Full Text] [Related]
40. Effective chemical control of psychrotrophic Bacillus cereus EPSO-35AS and INRA TZ415 spore outgrowth in carrot broth. Hernández-Herrero LA; Giner MJ; Valero M Food Microbiol; 2008 Aug; 25(5):714-21. PubMed ID: 18541171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]