These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 16860848)

  • 1. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment.
    Polettini A; Pomi R; Rolle E
    Chemosphere; 2007 Jan; 66(5):866-77. PubMed ID: 16860848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study of chelant-assisted remediation of contaminated dredged sediment.
    Polettini A; Pomi R; Rolle E; Ceremigna D; De Propris L; Gabellini M; Tornato A
    J Hazard Mater; 2006 Oct; 137(3):1458-65. PubMed ID: 16750293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of metal exchange in EDDS-flushing column experiments.
    Lo IM; Tsang DC; Yip TC; Wang F; Zhang W
    Chemosphere; 2011 Mar; 83(1):7-13. PubMed ID: 21316732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of the green chelant EDDS to enhance the stability of hydrogen peroxide in the presence of aquifer solids.
    Xu X; Thomson NR
    Chemosphere; 2007 Oct; 69(5):755-62. PubMed ID: 17610934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes.
    Beiyuan J; Tsang DCW; Valix M; Baek K; Ok YS; Zhang W; Bolan NS; Rinklebe J; Li XD
    Chemosphere; 2018 Aug; 205():178-187. PubMed ID: 29698828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.
    Song Y; Ammami MT; Benamar A; Mezazigh S; Wang H
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10577-10586. PubMed ID: 26782321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.
    Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H
    Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of heavy metals from e-waste contaminated soils using EDDS.
    Yang R; Luo C; Zhang G; Li X; Shen Z
    J Environ Sci (China); 2012; 24(11):1985-94. PubMed ID: 23534233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency.
    Yan DY; Yip TC; Yui MM; Tsang DC; Lo IM
    J Hazard Mater; 2010 Jun; 178(1-3):890-4. PubMed ID: 20207072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.
    Lozano JC; Blanco Rodríguez P; Tomé FV; Calvo CP
    J Hazard Mater; 2011 Dec; 198():224-31. PubMed ID: 22047721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.
    Tandy S; Ammann A; Schulin R; Nowack B
    Environ Pollut; 2006 Jul; 142(2):191-9. PubMed ID: 16338042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.