BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16860910)

  • 1. Plant-induced changes in soil chemistry do not explain differences in uranium transfer.
    Duquène L; Vandenhove H; Tack F; Van der Avoort E; Van Hees M; Wannijn J
    J Environ Radioact; 2006; 90(1):1-14. PubMed ID: 16860910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China.
    Chen SB; Zhu YG; Hu QH
    J Environ Radioact; 2005; 82(2):223-36. PubMed ID: 15878419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.
    Vandenhove H; Van Hees M; Wannijn J; Wouters K; Wang L
    Environ Pollut; 2007 Jan; 145(2):577-86. PubMed ID: 16781804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots.
    Straczek A; Duquene L; Wegrzynek D; Chinea-Cano E; Wannijn J; Navez J; Vandenhove H
    J Environ Radioact; 2010 Mar; 101(3):258-66. PubMed ID: 20080323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of uranium and thorium by native and cultivated plants.
    Shtangeeva I
    J Environ Radioact; 2010 Jun; 101(6):458-63. PubMed ID: 18649976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.
    Duquène L; Vandenhove H; Tack F; Van Hees M; Wannijn J
    J Environ Radioact; 2010 Feb; 101(2):140-7. PubMed ID: 19822385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils.
    Vandenhove H; Vanhoudt N; Duquène L; Antunes K; Wannijn J
    J Environ Radioact; 2014 Nov; 137():1-9. PubMed ID: 24980511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants.
    de Boulois HD; Joner EJ; Leyval C; Jakobsen I; Chen BD; Roos P; Thiry Y; Rufyikiri G; Delvaux B; Declerck S
    J Environ Radioact; 2008 May; 99(5):775-84. PubMed ID: 18069098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils.
    Gao Y; Zhu L
    Chemosphere; 2004 Jun; 55(9):1169-78. PubMed ID: 15081757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of biodegradable amendments on uranium solubility in contaminated soils.
    Duquène L; Tack F; Meers E; Baeten J; Wannijn J; Vandenhove H
    Sci Total Environ; 2008 Feb; 391(1):26-33. PubMed ID: 18061243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting radium availability and uptake from soil properties.
    Vandenhove H; Van Hees M
    Chemosphere; 2007 Sep; 69(4):664-74. PubMed ID: 17434569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter.
    Takeda A; Tsukada H; Takaku Y; Akata N; Hisamatsu S
    J Environ Radioact; 2008 Jun; 99(6):900-11. PubMed ID: 18164108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings.
    Chen B; Roos P; Zhu YG; Jakobsen I
    J Environ Radioact; 2008 May; 99(5):801-10. PubMed ID: 18061321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated.
    Vandenhove H; Van Hees M
    J Environ Radioact; 2004; 72(1-2):41-5. PubMed ID: 15162854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and distribution of natural radioactivity in wheat plants from soil.
    Pulhani VA; Dafauti S; Hegde AG; Sharma RM; Mishra UC
    J Environ Radioact; 2005; 79(3):331-46. PubMed ID: 15607519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of phenanthrene uptake by plants with a partition-limited model.
    Zhu L; Gao Y
    Environ Pollut; 2004 Oct; 131(3):505-8. PubMed ID: 15261414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard.
    Li J; Zhang J; Larson SL; Ballard JH; Guo K; Arslan Z; Ma Y; Waggoner CA; White JR; Han FX
    Int J Phytoremediation; 2019; 21(12):1197-1204. PubMed ID: 31099254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.