These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16860913)

  • 1. Modelling surface radioactive spill dispersion in the Alborán Sea.
    Periáñez R
    J Environ Radioact; 2006; 90(1):48-67. PubMed ID: 16860913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modelling study on 137Cs and 239,240Pu behaviour in the Alborán Sea, western Mediterranean.
    Periáñez R
    J Environ Radioact; 2008 Apr; 99(4):694-715. PubMed ID: 18031877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An operative lagrangian model for simulating radioactivity dispersion in the Strait of Gibraltar.
    Periáñez R
    J Environ Radioact; 2005; 84(1):95-101. PubMed ID: 15950333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters.
    Periáñez R; Caravaca F
    Mar Pollut Bull; 2010 Sep; 60(9):1412-22. PubMed ID: 20584539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A particle-tracking model for simulating pollutant dispersion in the Strait of Gibraltar.
    Periáñez R
    Mar Pollut Bull; 2004 Oct; 49(7-8):613-23. PubMed ID: 15476840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental modelling in the Gulf of Cadiz: heavy metal distributions in water and sediments.
    Periáñez R
    Sci Total Environ; 2009 May; 407(10):3392-406. PubMed ID: 19246075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion.
    Periáñez R
    Environ Pollut; 2005 Jan; 133(2):351-64. PubMed ID: 15519466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dispersion of 99Tc in the Nordic Seas and the Arctic Ocean: a comparison of model results and observations.
    Karcher MJ; Gerland S; Harms IH; Iosjpe M; Heldal HE; Kershaw PJ; Sickel M
    J Environ Radioact; 2004; 74(1-3):185-98. PubMed ID: 15063547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dispersion of 137Cs and 239,240Pu in the Rhone River plume: a numerical model.
    Periáñez R
    J Environ Radioact; 2004; 77(3):301-24. PubMed ID: 15381323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local scale marine modelling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description.
    Periáñez R; Suh KS; Min BI
    Mar Pollut Bull; 2012 Nov; 64(11):2333-9. PubMed ID: 23021937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the sensitivity of a marine dispersion model to parameters describing the transfers of radionuclides between the liquid and solid phases.
    Periáñez R
    J Environ Radioact; 2004; 73(1):101-15. PubMed ID: 15001298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of emergency response tools for accidental radiological contamination of French coastal areas.
    Duffa C; Bailly du Bois P; Caillaud M; Charmasson S; Couvez C; Didier D; Dumas F; Fievet B; Morillon M; Renaud P; Thébault H
    J Environ Radioact; 2016 Jan; 151 Pt 2():487-94. PubMed ID: 26032189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of complex hydrodynamic processes on the horizontal and vertical distribution of Tc-99 in the Irish Sea.
    Olbert AI; Hartnett M; Dabrowski T; Kelleher K
    Sci Total Environ; 2010 Dec; 409(1):150-61. PubMed ID: 20947135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas.
    Lepicard S; Heling R; Maderich V
    J Environ Radioact; 2004; 72(1-2):153-61. PubMed ID: 15162867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Tc-99 monitoring within the western Irish Sea using a numerical model.
    Olbert AI; Hartnett M; Dabrowski T
    Sci Total Environ; 2010 Aug; 408(17):3671-82. PubMed ID: 20537687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic radionuclides in the Japan Sea: their distributions and transport processes.
    Ito T; Aramaki T; Kitamura T; Otosaka S; Suzuki T; Togawa O; Kobayashi T; Senjyu T; Chaykovskaya EL; Karasev EV; Lishavskaya TS; Novichkov VP; Tkalin AV; Shcherbinin AF; Volkov YN
    J Environ Radioact; 2003; 68(3):249-67. PubMed ID: 12782476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary.
    Håkanson L; Lindgren D
    Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling multiple dispersion of radionuclides through the environment.
    Monte L
    J Environ Radioact; 2010 Feb; 101(2):134-9. PubMed ID: 19864050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.