These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16860927)

  • 41. Network inference by combining biologically motivated regulatory constraints with penalized regression.
    Parisi F; Koeppl H; Naef F
    Ann N Y Acad Sci; 2009 Mar; 1158():114-24. PubMed ID: 19348637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How Humans Solve Complex Problems: The Case of the Knapsack Problem.
    Murawski C; Bossaerts P
    Sci Rep; 2016 Oct; 6():34851. PubMed ID: 27713516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms.
    Béraud B; Steyer JP; Lemoine C; Latrille E; Manic G; Printemps-Vacquier C
    Water Sci Technol; 2007; 56(9):109-16. PubMed ID: 18025738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel generalized design methodology and realization of Boolean operations using DNA.
    Zoraida BS; Arock M; Ronald BS; Ponalagusamy R
    Biosystems; 2009 Sep; 97(3):146-53. PubMed ID: 19505531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An alternative recurrent neural network for solving variational inequalities and related optimization problems.
    Hu X; Zhang B
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1640-5. PubMed ID: 19661003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Entropy-Based Diversification Approach for Bio-Computing Methods.
    Olivares R; Soto R; Crawford B; Riquelme F; Munoz R; Ríos V; Cabrera R; Castro C
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On local search for bi-objective knapsack problems.
    Liefooghe A; Paquete L; Figueira JR
    Evol Comput; 2013; 21(1):179-96. PubMed ID: 22385108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliable computing in estimation of variance components.
    Misztal I
    J Anim Breed Genet; 2008 Dec; 125(6):363-70. PubMed ID: 19134071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Binary salp swarm algorithm for discounted {0-1} knapsack problem.
    Dang BT; Truong TK
    PLoS One; 2022; 17(4):e0266537. PubMed ID: 35390109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Introducing robustness in multi-objective optimization.
    Deb K; Gupta H
    Evol Comput; 2006; 14(4):463-94. PubMed ID: 17109607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular Sticker Model Stimulation on Silicon for a Maximum Clique Problem.
    Ning J; Li Y; Yu W
    Int J Mol Sci; 2015 Jun; 16(6):13474-89. PubMed ID: 26075867
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.
    Esau M; Rozema M; Zhang TH; Zeng D; Chiu S; Kwan R; Moorhouse C; Murray C; Tseng NT; Ridgway D; Sauvageau D; Ellison M
    ACS Synth Biol; 2014 Dec; 3(12):972-5. PubMed ID: 25524102
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential dependence on DNA ligase of type II restriction enzymes: a practical way toward ligase-free DNA automaton.
    Chen P; Li J; Zhao J; He L; Zhang Z
    Biochem Biophys Res Commun; 2007 Feb; 353(3):733-7. PubMed ID: 17196173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solving the Family Traveling Salesperson Problem in the Adleman-Lipton Model Based on DNA Computing.
    Wu X; Wang Z; Wu T; Bao X
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):75-85. PubMed ID: 34460379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data handling strategies for high throughput pyrosequencers.
    Trombetti GA; Bonnal RJ; Rizzi E; De Bellis G; Milanesi L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S22. PubMed ID: 17430567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA computing, computation complexity and problem of biological evolution rate.
    Melkikh AV
    Acta Biotheor; 2008 Dec; 56(4):285-95. PubMed ID: 18787960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.
    Wang Z; Pu J; Cao L; Tan J
    Int J Mol Sci; 2015 Oct; 16(10):25338-52. PubMed ID: 26512650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A programmable biomolecular computing machine with bacterial phenotype output.
    Kossoy E; Lavid N; Soreni-Harari M; Shoham Y; Keinan E
    Chembiochem; 2007 Jul; 8(11):1255-60. PubMed ID: 17562552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling and analysis of the sugar cataract development process using stochastic hybrid systems.
    Riley D; Koutsoukos X; Riley K
    IET Syst Biol; 2009 May; 3(3):137-54. PubMed ID: 19449975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The simulation of the three-dimensional lattice hydrophobic-polar protein folding.
    Guo YZ; Feng EM
    J Chem Phys; 2006 Dec; 125(23):234703. PubMed ID: 17190566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.