These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16861008)

  • 21. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Action verbs and the primary motor cortex: a comparative TMS study of silent reading, frequency judgments, and motor imagery.
    Tomasino B; Fink GR; Sparing R; Dafotakis M; Weiss PH
    Neuropsychologia; 2008; 46(7):1915-26. PubMed ID: 18328510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study.
    Suzuki M; Miyai I; Ono T; Oda I; Konishi I; Kochiyama T; Kubota K
    Neuroimage; 2004 Nov; 23(3):1020-6. PubMed ID: 15528102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of cortical connectivity during real and imagined rhythmic finger tapping.
    Stavrinou ML; Moraru L; Cimponeriu L; Della Penna S; Bezerianos A
    Brain Topogr; 2007; 19(3):137-45. PubMed ID: 17587169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limb (hand vs. foot) and response conflict have similar effects on event-related potentials (ERPs) recorded during motor imagery and overt execution.
    Carrillo-de-la-Peña MT; Lastra-Barreira C; Galdo-Alvarez S
    Eur J Neurosci; 2006 Jul; 24(2):635-43. PubMed ID: 16903864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study.
    Wriessnegger SC; Kurzmann J; Neuper C
    Int J Psychophysiol; 2008 Jan; 67(1):54-63. PubMed ID: 18006099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort.
    Papadelis C; Kourtidou-Papadeli C; Bamidis P; Albani M
    Brain Cogn; 2007 Jun; 64(1):74-85. PubMed ID: 17335950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training.
    Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normal aging and motor imagery vividness: implications for mental practice training in rehabilitation.
    Malouin F; Richards CL; Durand A
    Arch Phys Med Rehabil; 2010 Jul; 91(7):1122-7. PubMed ID: 20537312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging human supraspinal locomotor centers in brainstem and cerebellum.
    Jahn K; Deutschländer A; Stephan T; Kalla R; Wiesmann M; Strupp M; Brandt T
    Neuroimage; 2008 Jan; 39(2):786-92. PubMed ID: 18029199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for motor simulation in imagined locomotion.
    Kunz BR; Creem-Regehr SH; Thompson WB
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1458-71. PubMed ID: 19803649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The neural mechanism of imagining facial affective expression.
    Kim SE; Kim JW; Kim JJ; Jeong BS; Choi EA; Jeong YG; Kim JH; Ku J; Ki SW
    Brain Res; 2007 May; 1145():128-37. PubMed ID: 17359942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study.
    Suzuki M; Miyai I; Ono T; Kubota K
    Neuroimage; 2008 Jan; 39(2):600-7. PubMed ID: 17950626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of body configuration on motor imagery of walking in younger and older adults.
    Saimpont A; Malouin F; Tousignant B; Jackson PL
    Neuroscience; 2012 Oct; 222():49-57. PubMed ID: 22796073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of vision and motor imagery styles on equilibrium control during whole-body rotations.
    Golomer EM; Gravenhorst RM; Toussaint Y
    Somatosens Mot Res; 2009 Dec; 26(4):105-10. PubMed ID: 20047511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Cortical control in locomotion].
    Mori F; Nakajima K
    Brain Nerve; 2010 Nov; 62(11):1139-47. PubMed ID: 21068450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.
    Kim JS; Oh DW; Kim SY; Choi JD
    Clin Rehabil; 2011 Feb; 25(2):134-45. PubMed ID: 20943715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vestibular cortex activation during locomotor imagery in the blind.
    Deutschländer A; Stephan T; Hüfner K; Wagner J; Wiesmann M; Strupp M; Brandt T; Jahn K
    Ann N Y Acad Sci; 2009 May; 1164():350-2. PubMed ID: 19645926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping.
    Chen H; Yang Q; Liao W; Gong Q; Shen S
    Neuroimage; 2009 Oct; 47(4):1844-53. PubMed ID: 19540349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
    Gabbard C; Ammar D; Cordova A
    Int J Neurosci; 2009; 119(3):353-65. PubMed ID: 19116842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.