These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 16861039)
1. Identifying the interacting positions of a protein using Boolean learning and support vector machines. Dubey A; Realff MJ; Lee JH; Bommarius AS Comput Biol Chem; 2006 Aug; 30(4):268-79. PubMed ID: 16861039 [TBL] [Abstract][Full Text] [Related]
2. Identifying interacting residues using Boolean Learning and Support Vector Machines: case study on mRFP and DsRed proteins. Loo BL; Dubey A; Realff MJ; Lee JH; Bommarius AS Biotechnol J; 2008 Jan; 3(1):63-73. PubMed ID: 18041779 [TBL] [Abstract][Full Text] [Related]
3. Support vector machines for learning to identify the critical positions of a protein. Dubey A; Realff MJ; Lee JH; Bommarius AS J Theor Biol; 2005 Jun; 234(3):351-61. PubMed ID: 15784270 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Masso M; Vaisman II Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
6. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
7. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Shamim MT; Anwaruddin M; Nagarajaram HA Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092 [TBL] [Abstract][Full Text] [Related]
8. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Wang Y; Xue Z; Shen G; Xu J Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992 [TBL] [Abstract][Full Text] [Related]
9. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Zhang TL; Ding YS Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864 [TBL] [Abstract][Full Text] [Related]
10. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Pugalenthi G; Kumar KK; Suganthan PN; Gangal R Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645 [TBL] [Abstract][Full Text] [Related]
11. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114 [TBL] [Abstract][Full Text] [Related]
12. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454 [TBL] [Abstract][Full Text] [Related]
13. Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Shi JY; Zhang SW; Pan Q; Zhou GP Amino Acids; 2008 Aug; 35(2):321-7. PubMed ID: 18209947 [TBL] [Abstract][Full Text] [Related]
14. Prediction of protein structural classes using support vector machines. Sun XD; Huang RB Amino Acids; 2006 Jun; 30(4):469-75. PubMed ID: 16622605 [TBL] [Abstract][Full Text] [Related]
15. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Song J; Yuan Z; Tan H; Huber T; Burrage K Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444 [TBL] [Abstract][Full Text] [Related]
16. Support vector machines for the classification and prediction of beta-turn types. Cai YD; Liu XJ; Xu XB; Chou KC J Pept Sci; 2002 Jul; 8(7):297-301. PubMed ID: 12148778 [TBL] [Abstract][Full Text] [Related]
17. Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Kim H; Park H Proteins; 2004 Feb; 54(3):557-62. PubMed ID: 14748002 [TBL] [Abstract][Full Text] [Related]
18. Predicting the phosphorylation sites using hidden Markov models and machine learning methods. Senawongse P; Dalby AR; Yang ZR J Chem Inf Model; 2005; 45(4):1147-52. PubMed ID: 16045309 [TBL] [Abstract][Full Text] [Related]
19. Improving the performance of an SVM-based method for predicting protein-protein interactions. Dohkan S; Koike A; Takagi T In Silico Biol; 2006; 6(6):515-29. PubMed ID: 17518762 [TBL] [Abstract][Full Text] [Related]
20. Integrating subcellular location for improving machine learning models of remote homology detection in eukaryotic organisms. Shah AR; Oehmen CS; Harper J; Webb-Robertson BJ Comput Biol Chem; 2007 Apr; 31(2):138-42. PubMed ID: 17416337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]