These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16861276)

  • 21. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PEVK domain of titin: an entropic spring with actin-binding properties.
    Linke WA; Kulke M; Li H; Fujita-Becker S; Neagoe C; Manstein DJ; Gautel M; Fernandez JM
    J Struct Biol; 2002; 137(1-2):194-205. PubMed ID: 12064946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells.
    Nishida S; Funabashi Y; Ikai A
    Ultramicroscopy; 2002 May; 91(1-4):269-74. PubMed ID: 12211478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications.
    Gaiduk A; Kühnemuth R; Antonik M; Seidel CA
    Chemphyschem; 2005 May; 6(5):976-83. PubMed ID: 15884085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CLAFEM: Correlative light atomic force electron microscopy.
    Janel S; Werkmeister E; Bongiovanni A; Lafont F; Barois N
    Methods Cell Biol; 2017; 140():165-185. PubMed ID: 28528632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence imaging and spectroscopy of biomaterials in air and liquid by scanning near-field optical/atomic force microscopy.
    Muramatsu H; Chiba N; Nakajima K; Ataka T; Fujihira M; Hitomi J; Ushiki T
    Scanning Microsc; 1996; 10(4):975-82. PubMed ID: 9854850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basic Methods to Visualize Actin Filaments In Vitro Using Fluorescence Microscopy for Observation of Filament Severing and Bundling.
    Ono S
    Methods Mol Biol; 2016; 1365():187-93. PubMed ID: 26498785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stepwise unfolding of titin under force-clamp atomic force microscopy.
    Oberhauser AF; Hansma PK; Carrion-Vazquez M; Fernandez JM
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):468-72. PubMed ID: 11149943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic force microscopy of the myosin molecule.
    Hallett P; Offer G; Miles MJ
    Biophys J; 1995 Apr; 68(4):1604-6. PubMed ID: 7787046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications.
    D'Agostino DP; McNally HA; Dean JB
    J Microsc; 2012 May; 246(2):129-42. PubMed ID: 22455392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques.
    Moreno Flores S; Toca-Herrera JL
    Nanoscale; 2009 Oct; 1(1):40-9. PubMed ID: 20644859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional extension of high-speed AFM for wider biological applications.
    Uchihashi T; Watanabe H; Fukuda S; Shibata M; Ando T
    Ultramicroscopy; 2016 Jan; 160():182-196. PubMed ID: 26521164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope.
    Henderson E; Sakaguchi DS
    Neuroimage; 1993 Sep; 1(2):145-50. PubMed ID: 9343565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing membrane order and topography in supported lipid bilayers by combined polarized total internal reflection fluorescence-atomic force microscopy.
    Oreopoulos J; Yip CM
    Biophys J; 2009 Mar; 96(5):1970-84. PubMed ID: 19254557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy.
    Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K
    Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the conformation-regulated function of titin kinase by mechanical pump and probe experiments with single molecules.
    Puchner EM; Gaub HE
    Angew Chem Int Ed Engl; 2010 Feb; 49(6):1147-50. PubMed ID: 20077447
    [No Abstract]   [Full Text] [Related]  

  • 38. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells.
    Colom A; Casuso I; Rico F; Scheuring S
    Nat Commun; 2013; 4():2155. PubMed ID: 23857417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elastic properties of single titin molecules made visible through fluorescent F-actin binding.
    Kellermayer MS; Granzier HL
    Biochem Biophys Res Commun; 1996 Apr; 221(3):491-7. PubMed ID: 8629989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous collection of topographic and fluorescent images of barley chromosomes by scanning near-field optical/atomic force microscopy.
    Yoshino T; Sugiyama S; Hagiwara S; Ushiki T; Ohtani T
    J Electron Microsc (Tokyo); 2002; 51(3):199-203. PubMed ID: 12113628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.