These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 16861276)

  • 41. Elastic properties of single titin molecules made visible through fluorescent F-actin binding.
    Kellermayer MS; Granzier HL
    Biochem Biophys Res Commun; 1996 Apr; 221(3):491-7. PubMed ID: 8629989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous collection of topographic and fluorescent images of barley chromosomes by scanning near-field optical/atomic force microscopy.
    Yoshino T; Sugiyama S; Hagiwara S; Ushiki T; Ohtani T
    J Electron Microsc (Tokyo); 2002; 51(3):199-203. PubMed ID: 12113628
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic force microscopy and its related techniques in biomedicine.
    Ushiki T
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):3-8. PubMed ID: 11729969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution imaging of myosin motor in action by a high-speed atomic force microscope.
    Kodera N; Kinoshita T; Ito T; Ando T
    Adv Exp Med Biol; 2003; 538():119-27. PubMed ID: 15098660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic light scattering and atomic force microscopy imaging on fragments of beta-connectin from human cardiac muscle.
    Marchetti S; Sbrana F; Raccis R; Lanzi L; Gambi CM; Vassalli M; Tiribilli B; Pacini A; Toscano A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021910. PubMed ID: 18352054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse engineering of the giant muscle protein titin.
    Li H; Linke WA; Oberhauser AF; Carrion-Vazquez M; Kerkvliet JG; Lu H; Marszalek PE; Fernandez JM
    Nature; 2002 Aug; 418(6901):998-1002. PubMed ID: 12198551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence depolarization of actin filaments in reconstructed myofibers: the effect of S1 or pPDM-S1 on movements of distinct areas of actin.
    Borovikov YS; Dedova IV; dos Remedios CG; Vikhoreva NN; Vikhorev PG; Avrova SV; Hazlett TL; Van Der Meer BW
    Biophys J; 2004 May; 86(5):3020-9. PubMed ID: 15111416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy.
    Liu L; Wei Y; Liu J; Wang K; Zhang J; Zhang P; Zhou Y; Li B
    Cell Prolif; 2020 Jan; 53(1):e12670. PubMed ID: 31568631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe.
    Moretti M; Canale C; Francardi M; Dante S; De Angelis F; Di Fabrizio E
    Microsc Res Tech; 2012 Dec; 75(12):1723-31. PubMed ID: 22972761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Speed Atomic Force Microscopy to Study Myosin Motility.
    Kodera N; Ando T
    Adv Exp Med Biol; 2020; 1239():127-152. PubMed ID: 32451858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Live cell response to mechanical stimulation studied by integrated optical and atomic force microscopy.
    Trache A; Lim SM
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical attachment of fluorescent protein particles to atomic force microscopy probes in aqueous media: implications for surface pH, fluorescence, and mechanical properties studies.
    Moreno-Flores S; Georgieva R; Xiong Y; Melzak K; Bäumler H; Luis Toca-Herrera J
    Microsc Res Tech; 2010 Aug; 73(8):746-51. PubMed ID: 20034020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy.
    Tokunaga M; Kitamura K; Saito K; Iwane AH; Yanagida T
    Biochem Biophys Res Commun; 1997 Jun; 235(1):47-53. PubMed ID: 9196033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and function of myosin filaments.
    Craig R; Woodhead JL
    Curr Opin Struct Biol; 2006 Apr; 16(2):204-12. PubMed ID: 16563742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility.
    Endesfelder U; van de Linde S; Wolter S; Sauer M; Heilemann M
    Chemphyschem; 2010 Mar; 11(4):836-40. PubMed ID: 20186905
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells.
    Hecht E; Knittel P; Felder E; Dietl P; Mizaikoff B; Kranz C
    Analyst; 2012 Nov; 137(22):5208-14. PubMed ID: 22977882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of the actin-myosin interaction by titin.
    Niederländer N; Raynaud F; Astier C; Chaussepied P
    Eur J Biochem; 2004 Nov; 271(22):4572-81. PubMed ID: 15560799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium transients regulate patterned actin assembly during myofibrillogenesis.
    Li H; Cook JD; Terry M; Spitzer NC; Ferrari MB
    Dev Dyn; 2004 Feb; 229(2):231-42. PubMed ID: 14745949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined Atomic Force Microscope and Volumetric Light Sheet System for Correlative Force and Fluorescence Mechanobiology Studies.
    Nelsen E; Hobson CM; Kern ME; Hsiao JP; O'Brien Iii ET; Watanabe T; Condon BM; Boyce M; Grinstein S; Hahn KM; Falvo MR; Superfine R
    Sci Rep; 2020 May; 10(1):8133. PubMed ID: 32424215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.