BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16861777)

  • 21. Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy.
    Aguet F; Van De Ville D; Unser M
    IEEE Trans Image Process; 2008 Jul; 17(7):1144-53. PubMed ID: 18586622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment.
    Prior P; Roth BJ
    Phys Med Biol; 2009 May; 54(10):3015-30. PubMed ID: 19387101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms.
    Laun FB; Huff S; Stieltjes B
    Magn Reson Imaging; 2009 May; 27(4):541-8. PubMed ID: 18977104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental validation, quality control methods and unified theory for DTI error propagation are needed.
    Kingsley PB
    Magn Reson Imaging; 2008 Oct; 26(8):1197-9; author reply 1199-200. PubMed ID: 18436408
    [No Abstract]   [Full Text] [Related]  

  • 25. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.
    Voit F; Schäfer J; Kienle A
    Opt Lett; 2009 Sep; 34(17):2593-5. PubMed ID: 19724500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multispectral Cerenkov luminescence tomography for small animal optical imaging.
    Spinelli AE; Kuo C; Rice BW; Calandrino R; Marzola P; Sbarbati A; Boschi F
    Opt Express; 2011 Jun; 19(13):12605-18. PubMed ID: 21716501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.
    Han R; Liang J; Qu X; Hou Y; Ren N; Mao J; Tian J
    Opt Express; 2009 Aug; 17(17):14481-94. PubMed ID: 19687926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An optimal permissible source region strategy for multispectral bioluminescence tomography.
    Feng J; Jia K; Yan G; Zhu S; Qin C; Lv Y; Tian J
    Opt Express; 2008 Sep; 16(20):15640-54. PubMed ID: 18825203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resolution- versus sensitivity-effective diameter in pinhole collimation: experimental verification.
    Metzler SD; Accorsi R
    Phys Med Biol; 2005 Nov; 50(21):5005-17. PubMed ID: 16237237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of spatially resolved reflectance signals to coincident variations in tissue optical properties.
    Arifler D
    Appl Opt; 2010 Aug; 49(22):4310-20. PubMed ID: 20676188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive improved element free Galerkin method for quasi- or multi-spectral bioluminescence tomography.
    Qin C; Yang X; Feng J; Liu K; Liu J; Yan G; Zhu S; Xu M; Tian J
    Opt Express; 2009 Nov; 17(24):21925-34. PubMed ID: 19997437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.
    Farrell TJ; Patterson MS; Wilson B
    Med Phys; 1992; 19(4):879-88. PubMed ID: 1518476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous Wave Spectroscopy with Diffusion Theory for Quantification of Optical Properties: Comparison Between Multi-distance and Multi-wavelength Data Fitting Methods.
    Lin YC; Lin ZF; Nioka S; Chen LH; Tseng SH; Chung PC
    Adv Exp Med Biol; 2016; 923():337-343. PubMed ID: 27526161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and imaging of compositional variation in tissues.
    Kumar D; Singh M
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):1012-9. PubMed ID: 12892328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method.
    Qin C; Zhu S; Feng J; Zhong J; Ma X; Wu P; Tian J
    J Biophotonics; 2011 Nov; 4(11-12):824-39. PubMed ID: 21987294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical characterization of thin female breast biopsies based on the reduced scattering coefficient.
    Garofalakis A; Zacharakis G; Filippidis G; Sanidas E; Tsiftsis DD; Stathopoulos E; Kafousi M; Ripoll J; Papazoglou TG
    Phys Med Biol; 2005 Jun; 50(11):2583-96. PubMed ID: 15901956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reflectance-based determination of optical properties in highly attenuating tissue.
    Pfefer TJ; Matchette LS; Bennett CL; Gall JA; Wilke JN; Durkin AJ; Ediger MN
    J Biomed Opt; 2003 Apr; 8(2):206-15. PubMed ID: 12683846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation.
    Chen T; Lamm MH; Glotzer SC
    J Chem Phys; 2004 Aug; 121(8):3919-29. PubMed ID: 15303961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gaussian-DPSM (G-DPSM) and Element Source Method (ESM) modifications to DPSM for ultrasonic field modeling.
    Rahani EK; Kundu T
    Ultrasonics; 2011 Jul; 51(5):625-31. PubMed ID: 21300391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.
    Stasic D; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Nov; 48(21):3459-74. PubMed ID: 14653556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.