These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16861777)

  • 41. Attenuation estimations using envelope echo data: analysis and simulations.
    Tu H; Zagzebski J; Chen Q
    Ultrasound Med Biol; 2006 Mar; 32(3):377-86. PubMed ID: 16530096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time realistic skin translucency.
    Jimenez J; Whelan D; Sundstedt V; Gutierrez D
    IEEE Comput Graph Appl; 2010; 30(4):32-41. PubMed ID: 20650726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation.
    Péry E; Blondel WC; Thomas C; Guillemin F
    J Biomed Opt; 2009; 14(2):024048. PubMed ID: 19405776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple-source optical diffusion approximation for a multilayer scattering medium.
    Hollmann JL; Wang LV
    Appl Opt; 2007 Aug; 46(23):6004-9. PubMed ID: 17694156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diffusion between evolving interfaces.
    Juntunen J; Merikoski J
    J Phys Condens Matter; 2010 Nov; 22(46):465402. PubMed ID: 21403369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory.
    Randeberg LL; Larsen EL; Svaasand LO
    J Biophotonics; 2010 Jan; 3(1-2):53-65. PubMed ID: 19739145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioluminescence tomography based on the phase approximation model.
    Cong W; Wang G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):174-9. PubMed ID: 20126228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.
    Diamond KR; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation.
    Liu Y; Jiang H; Yuan Z
    Med Phys; 2016 Jul; 43(7):3987. PubMed ID: 27370117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of a diffusion-model-based approach for efficient quantification of superficial tissue properties.
    Tseng SH; Hou MF
    Opt Lett; 2010 Nov; 35(22):3739-41. PubMed ID: 21081981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue.
    Pfefer TJ; Wang Q; Drezek RA
    Comput Methods Programs Biomed; 2011 Nov; 104(2):161-7. PubMed ID: 21111507
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues.
    Hielscher AH; Jacques SL; Wang L; Tittel FK
    Phys Med Biol; 1995 Nov; 40(11):1957-75. PubMed ID: 8587943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity of a closed-form diffusion solution in P1 approximation for reflectance imaging with an oblique beam of arbitrary profile.
    Lu JQ; Chen C; Pravica DW; Brock RS; Hu XH
    Med Phys; 2008 Sep; 35(9):3979-87. PubMed ID: 18841849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility of Monte Carlo simulations in quantitative tissue imaging.
    Maeder U; Schmidts T; Avci E; Heverhagen JT; Runkel F; Fiebich M
    Int J Artif Organs; 2010 Apr; 33(4):253-9. PubMed ID: 20458695
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An optical-parameters-free method for locating light source in deep tissue.
    Quan Q; Zheng Z; Yao Y; Gu J; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3033-6. PubMed ID: 21095728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling of nonphase mechanisms in ultrasonic modulation of light propagation.
    Liu Q; Norton S; Vo-Dinh T
    Appl Opt; 2008 Jul; 47(20):3619-30. PubMed ID: 18617978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection.
    Chen X; Yang D; Qu X; Hu H; Liang J; Gao X; Tian J
    J Biomed Opt; 2012 Jun; 17(6):066015. PubMed ID: 22734771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Steady-state total diffuse reflectance with an exponential decaying source.
    Symvoulidis P; Jentoft KM; Garcia-Allende PB; Glatz J; Ripoll J; Ntziachristos V
    Opt Lett; 2014 Jul; 39(13):3919-22. PubMed ID: 24978771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.