BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 16861784)

  • 1. Development of a novel loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3835-50. PubMed ID: 16861784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of a dispersive ground electrode with a loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3851-63. PubMed ID: 16861785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiofrequency hyperthermia: the design of coil transducers for local heating.
    Lerch IA; Kohn S
    Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):939-48. PubMed ID: 6863066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study.
    Jiménez-Lozano J; Vacas-Jacques P; Anderson RR; Franco W
    Phys Med Biol; 2012 Nov; 57(22):7555-78. PubMed ID: 23104083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating.
    Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA
    Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms.
    Ruggera PS; Kantor G
    IEEE Trans Biomed Eng; 1984 Jan; 31(1):98-106. PubMed ID: 6724615
    [No Abstract]   [Full Text] [Related]  

  • 8. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia.
    Satoh T; Stauffer PR; Fike JR
    Int J Radiat Oncol Biol Phys; 1988 Nov; 15(5):1209-18. PubMed ID: 3182353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging.
    Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB
    Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of coil dimensions and field polarization on RF heating inside a head phantom.
    Kangarlu A; Ibrahim TS; Shellock FG
    Magn Reson Imaging; 2005 Jan; 23(1):53-60. PubMed ID: 15733788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of implant RF heating through modification of transmit coil electric field.
    Eryaman Y; Akin B; Atalar E
    Magn Reson Med; 2011 May; 65(5):1305-13. PubMed ID: 21500259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RF phased array applicator designed for hyperthermia breast cancer treatments.
    Wu L; McGough RJ; Arabe OA; Samulski TV
    Phys Med Biol; 2006 Jan; 51(1):1-20. PubMed ID: 16357427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional heating by insertion of dielectrics and rotation of the focused electric field in the hyperthermia.
    Kameyama Y; Ishihara Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4380-3. PubMed ID: 19163684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating patterns induced by a 13.56 MHz radiofrequency generator in large phantoms and pig abdomen and thorax.
    Paliwal BR; Gibbs FA; Wiley AL
    Int J Radiat Oncol Biol Phys; 1982 May; 8(5):857-64. PubMed ID: 7107421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.