BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16862607)

  • 1. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Delta mutant of Saccharomyces cerevisiae.
    Chattopadhyay MK; Tabor CW; Tabor H
    Yeast; 2006 Jul; 23(10):751-61. PubMed ID: 16862607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevation of cellular Mg
    Hanner AS; Dunworth M; Casero RA; MacDiarmid CW; Park MH
    J Biol Chem; 2019 Nov; 294(45):17131-17142. PubMed ID: 31548311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen toxicity in a polyamine-depleted spe2 delta mutant of Saccharomyces cerevisiae.
    Balasundaram D; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4693-7. PubMed ID: 8506320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase.
    Chattopadhyay MK; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13869-74. PubMed ID: 14617780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylthioadenosine and polyamine biosynthesis in a Saccharomyces cerevisiae meu1delta mutant.
    Chattopadhyay MK; Tabor CW; Tabor H
    Biochem Biophys Res Commun; 2006 Apr; 343(1):203-7. PubMed ID: 16530730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport.
    Soulet D; Covassin L; Kaouass M; Charest-Gaudreault R; Audette M; Poulin R
    Biochem J; 2002 Oct; 367(Pt 2):347-57. PubMed ID: 12097141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase.
    Tabor CW
    Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of polyamine-deficient Saccharomyces cerevisiae to elevated temperatures.
    Balasundaram D; Tabor CW; Tabor H
    J Bacteriol; 1996 May; 178(9):2721-4. PubMed ID: 8626346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a polyamine analogue, 1,19-bis-(ethylamino)-5,10,15- triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines.
    Basu HS; Pellarin M; Feuerstein BG; Shirahata A; Samejima K; Deen DF; Marton LJ
    Cancer Res; 1993 Sep; 53(17):3948-55. PubMed ID: 8358722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae.
    Tyagi AK; Wickner RB; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1149-53. PubMed ID: 6366799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae.
    Maruyama T; Masuda N; Kakinuma Y; Igarashi K
    Biochim Biophys Acta; 1994 Sep; 1194(2):289-95. PubMed ID: 7918542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species.
    Ha HC; Yager JD; Woster PA; Casero RA
    Biochem Biophys Res Commun; 1998 Mar; 244(1):298-303. PubMed ID: 9514920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi.
    Hernández SM; Sánchez MS; de Tarlovsky MN
    Acta Trop; 2006 Apr; 98(1):94-102. PubMed ID: 16574050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide.
    Rider JE; Hacker A; Mackintosh CA; Pegg AE; Woster PM; Casero RA
    Amino Acids; 2007 Aug; 33(2):231-40. PubMed ID: 17396215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine.
    Chattopadhyay MK; Park MH; Tabor H
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6554-9. PubMed ID: 18451031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases.
    Lushchak OV; Semchyshyn HM; Lushchak VI
    Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant.
    Hamasaki-Katagiri N; Katagiri Y; Tabor CW; Tabor H
    Gene; 1998 Apr; 210(2):195-201. PubMed ID: 9573363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polyamine-sensitive mutant of Aspergillus nidulans.
    Spathas DH; Clutterbuck AJ; Pateman JA
    J Gen Microbiol; 1983 Jun; 129(6):1865-71. PubMed ID: 6355384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.