These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16862607)

  • 1. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Delta mutant of Saccharomyces cerevisiae.
    Chattopadhyay MK; Tabor CW; Tabor H
    Yeast; 2006 Jul; 23(10):751-61. PubMed ID: 16862607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevation of cellular Mg
    Hanner AS; Dunworth M; Casero RA; MacDiarmid CW; Park MH
    J Biol Chem; 2019 Nov; 294(45):17131-17142. PubMed ID: 31548311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen toxicity in a polyamine-depleted spe2 delta mutant of Saccharomyces cerevisiae.
    Balasundaram D; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4693-7. PubMed ID: 8506320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase.
    Chattopadhyay MK; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13869-74. PubMed ID: 14617780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylthioadenosine and polyamine biosynthesis in a Saccharomyces cerevisiae meu1delta mutant.
    Chattopadhyay MK; Tabor CW; Tabor H
    Biochem Biophys Res Commun; 2006 Apr; 343(1):203-7. PubMed ID: 16530730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport.
    Soulet D; Covassin L; Kaouass M; Charest-Gaudreault R; Audette M; Poulin R
    Biochem J; 2002 Oct; 367(Pt 2):347-57. PubMed ID: 12097141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase.
    Tabor CW
    Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of polyamine-deficient Saccharomyces cerevisiae to elevated temperatures.
    Balasundaram D; Tabor CW; Tabor H
    J Bacteriol; 1996 May; 178(9):2721-4. PubMed ID: 8626346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a polyamine analogue, 1,19-bis-(ethylamino)-5,10,15- triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines.
    Basu HS; Pellarin M; Feuerstein BG; Shirahata A; Samejima K; Deen DF; Marton LJ
    Cancer Res; 1993 Sep; 53(17):3948-55. PubMed ID: 8358722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae.
    Tyagi AK; Wickner RB; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1149-53. PubMed ID: 6366799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae.
    Maruyama T; Masuda N; Kakinuma Y; Igarashi K
    Biochim Biophys Acta; 1994 Sep; 1194(2):289-95. PubMed ID: 7918542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species.
    Ha HC; Yager JD; Woster PA; Casero RA
    Biochem Biophys Res Commun; 1998 Mar; 244(1):298-303. PubMed ID: 9514920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi.
    Hernández SM; Sánchez MS; de Tarlovsky MN
    Acta Trop; 2006 Apr; 98(1):94-102. PubMed ID: 16574050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide.
    Rider JE; Hacker A; Mackintosh CA; Pegg AE; Woster PM; Casero RA
    Amino Acids; 2007 Aug; 33(2):231-40. PubMed ID: 17396215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine.
    Chattopadhyay MK; Park MH; Tabor H
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6554-9. PubMed ID: 18451031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases.
    Lushchak OV; Semchyshyn HM; Lushchak VI
    Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant.
    Hamasaki-Katagiri N; Katagiri Y; Tabor CW; Tabor H
    Gene; 1998 Apr; 210(2):195-201. PubMed ID: 9573363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polyamine-sensitive mutant of Aspergillus nidulans.
    Spathas DH; Clutterbuck AJ; Pateman JA
    J Gen Microbiol; 1983 Jun; 129(6):1865-71. PubMed ID: 6355384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.