These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16862776)

  • 1. Removal of boron (B) from waste liquors.
    Jiang JQ; Xu Y; Simon J; Quill K; Shettle K
    Water Sci Technol; 2006; 53(11):73-9. PubMed ID: 16862776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.
    Asaithambi P; Aziz ARA; Sajjadi B; Daud WMABW
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5168-5178. PubMed ID: 27221586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parametric study of alum recovery from water treatment sludge.
    Ayoub M; Abdelfattah A
    Water Sci Technol; 2016; 74(2):516-23. PubMed ID: 27438258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater.
    Ozay Y; Dizge N
    J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.
    Nasution MA; Yaakob Z; Ali E; Tasirin SM; Abdullah SR
    J Environ Qual; 2011; 40(4):1332-9. PubMed ID: 21712603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.
    Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II
    Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.
    Solak M; Kiliç M; Hüseyin Y; Sencan A
    J Hazard Mater; 2009 Dec; 172(1):345-52. PubMed ID: 19651474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative contribution study and comparison between electrocoagulation, anode-electrocoagulation and chemical coagulation using polymer-flooding sewage.
    Chen YM; Jiang WM; Liu Y; Kang Y
    Chemosphere; 2020 Jul; 250():126128. PubMed ID: 32088613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM
    J Hazard Mater; 2007 Jun; 144(1-2):101-7. PubMed ID: 17084968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.
    Kiliç MG; Hoşten C; Demirci S
    J Hazard Mater; 2009 Nov; 171(1-3):247-52. PubMed ID: 19576688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.
    Kabdaşli I; Arslan T; Olmez-Hanci T; Arslan-Alaton I; Tünay O
    J Hazard Mater; 2009 Jun; 165(1-3):838-45. PubMed ID: 19046620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM
    J Hazard Mater; 2007 Oct; 149(2):475-81. PubMed ID: 17524554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis.
    Shaker OA; Safwat SM; Matta ME
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26650-26662. PubMed ID: 36369444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocoagulation of palm oil mill effluent.
    Agustin MB; Sengpracha WP; Phutdhawong W
    Int J Environ Res Public Health; 2008 Sep; 5(3):177-80. PubMed ID: 19139537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.
    Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P
    J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of dairy effluents by electrocoagulation using aluminium electrodes.
    Tchamango S; Nanseu-Njiki CP; Ngameni E; Hadjiev D; Darchen A
    Sci Total Environ; 2010 Jan; 408(4):947-52. PubMed ID: 19900696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of the textile wastewater by combined electrocoagulation.
    Can OT; Kobya M; Demirbas E; Bayramoglu M
    Chemosphere; 2006 Jan; 62(2):181-7. PubMed ID: 15996715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation - A review.
    Yasasve M; Manjusha M; Manojj D; Hariharan NM; Sai Preethi P; Asaithambi P; Karmegam N; Saravanan M
    Chemosphere; 2022 Nov; 307(Pt 3):136017. PubMed ID: 35977566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of electrocoagulation, coagulation and the fenton process for the treatment of reactive dyebath effluent.
    Kabdaşli I; Arslan-Alaton I; Vardar B; Tünay O
    Water Sci Technol; 2007; 55(10):125-34. PubMed ID: 17564378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants.
    Jangkorn S; Kuhakaew S; Theantanoo S; Klinla-or H; Sriwiriyarat T
    J Environ Sci (China); 2011; 23(4):587-94. PubMed ID: 21793400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.