These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 16862781)

  • 1. Biological treatment of industrial wastes in a photobioreactor.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    Water Sci Technol; 2006; 53(11):117-25. PubMed ID: 16862781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.
    Cordova-Rosa SM; Dams RI; Cordova-Rosa EV; Radetski MR; Corrêa AX; Radetski CM
    J Hazard Mater; 2009 May; 164(1):61-6. PubMed ID: 18774223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of paper factory effluent using a phenol degrading Alcaligenes sp. under free and immobilized conditions.
    Nair IC; Jayachandran K; Shashidhar S
    Bioresour Technol; 2007 Feb; 98(3):714-6. PubMed ID: 16759854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    J Hazard Mater; 2010 Jan; 173(1-3):783-8. PubMed ID: 19783362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of phenol on the biological treatment of wastewaters from a resin producing industry.
    Eiroa M; Vilar A; Kennes C; Veiga MC
    Bioresour Technol; 2008 Jun; 99(9):3507-12. PubMed ID: 17897822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility.
    Park D; Lee DS; Kim YM; Park JM
    Bioresour Technol; 2008 Apr; 99(6):2092-6. PubMed ID: 17513106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined photocatalytic and fungal processes for the treatment of nitrocellulose industry wastewater.
    Barreto-Rodrigues M; Souza JV; Silva ES; Silva FT; Paiva TC
    J Hazard Mater; 2009 Jan; 161(2-3):1569-73. PubMed ID: 18571316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.
    Lee KM; Lim PE
    Water Sci Technol; 2003; 47(10):41-7. PubMed ID: 12862215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetically oxygenated acetonitrile biodegradation by an algal-bacterial microcosm: a pilot-scale study.
    Muñoz R; Rolvering C; Guieysse B; Mattiasson B
    Water Sci Technol; 2005; 51(12):261-5. PubMed ID: 16114693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment.
    Essam T; Aly Amin M; El Tayeb O; Mattiasson B; Guieysse B
    Water Res; 2007 Apr; 41(8):1697-704. PubMed ID: 17350074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors.
    Muñoz R; Jacinto M; Guieysse B; Mattiasson B
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):699-707. PubMed ID: 15666149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological nitrification and denitrification of opto-electronic industrial wastewater.
    Chen TK; Ni CH; Chen JN
    Water Sci Technol; 2003; 48(8):27-34. PubMed ID: 14682567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sudden failure of biological nitrogen and carbon removal in the full-scale pre-denitrification process treating cokes wastewater.
    Kim YM; Park D; Lee DS; Jung KA; Park JM
    Bioresour Technol; 2009 Oct; 100(19):4340-7. PubMed ID: 19427199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater.
    Toh SK; Ashbolt NJ
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):344-52. PubMed ID: 12111169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation.
    de Godos I; Vargas VA; Blanco S; González MC; Soto R; García-Encina PA; Becares E; Muñoz R
    Bioresour Technol; 2010 Jul; 101(14):5150-8. PubMed ID: 20219356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological removal of phenol from strong wastewaters using a novel MSBR.
    Moussavi G; Mahmoudi M; Barikbin B
    Water Res; 2009 Mar; 43(5):1295-302. PubMed ID: 19131088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
    Lei CN; Whang LM; Lin HL
    Water Sci Technol; 2008; 58(5):1001-6. PubMed ID: 18824797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer.
    Kim YM; Park D; Lee DS; Park JM
    J Hazard Mater; 2007 Mar; 141(1):27-32. PubMed ID: 16876932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor.
    Bajaj M; Gallert C; Winter J
    Bioresour Technol; 2008 Nov; 99(17):8376-81. PubMed ID: 18440804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of a low concentration industrial chemicals mixture in an UASB reactor.
    Castilla P; Leyva A; Garcia U; Monroy O; Meraz M
    Water Sci Technol; 2005; 52(1-2):385-90. PubMed ID: 16180454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.