BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 16863157)

  • 1. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions.
    Velásquez P; Leinen D; Pascual J; Ramos-Barrado JR; Grez P; Gómez H; Schrebler R; Del Río R; Córdova R
    J Phys Chem B; 2005 Mar; 109(11):4977-88. PubMed ID: 16863157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.
    Yang Y; Tan SN; Glenn AM; Harmer S; Bhargava S; Chen M
    Biofouling; 2015; 31(7):575-86. PubMed ID: 26343200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides.
    Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P
    Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral.
    Udayabhaskar Reddy G; Seshamaheswaramma K; Nakamura Y; Lakshmi Reddy S; Frost RL; Endo T
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():310-5. PubMed ID: 22705674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy.
    Bevilaqua D; Diéz-Perez I; Fugivara CS; Sanz F; Benedetti AV; Garcia O
    Bioelectrochemistry; 2004 Aug; 64(1):79-84. PubMed ID: 15219250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of aqueous selenium (-II) and (IV) with metallic sulfide surfaces.
    Naveau A; Monteil-Rivera F; Guillon E; Dumonceau J
    Environ Sci Technol; 2007 Aug; 41(15):5376-82. PubMed ID: 17822105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; González I; Cruz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy.
    Xu Z; Neoh KG; Amaechi B; Kishen A
    J Dent; 2010 Feb; 38(2):138-48. PubMed ID: 19804810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
    Mitchell TK; Nguyen AV; Evans GM
    Adv Colloid Interface Sci; 2005 Jun; 114-115():227-37. PubMed ID: 15894282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): spectroscopic and microscopic analyses.
    Han DS; Batchelor B; Abdel-Wahab A
    J Colloid Interface Sci; 2012 Feb; 368(1):496-504. PubMed ID: 22122947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dithiophosphinate-pyrite interaction: voltammetry and DRIFT spectroscopy investigations at oxidizing potentials.
    Güler T
    J Colloid Interface Sci; 2005 Aug; 288(2):319-24. PubMed ID: 15927595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy study of the response mechanism of the chalcogenide glass membrane iron(III) ion-selective electrode in saline media.
    De Marco R; Pejcic B
    Anal Chem; 2000 Feb; 72(4):669-79. PubMed ID: 10701249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum.
    Zhao H; Wang J; Gan X; Zheng X; Tao L; Hu M; Li Y; Qin W; Qiu G
    Bioresour Technol; 2015 Oct; 194():28-35. PubMed ID: 26183922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltammetric and drift spectroscopy investigation in dithiophosphinate-chalcopyrite system.
    Güler T; Hiçyilmaz C; Gökağaç G; Ekmekçi Z
    J Colloid Interface Sci; 2004 Nov; 279(1):46-54. PubMed ID: 15380410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation on mechanism of pyrite oxidation in acidic solutions].
    Wang N; Yi XY; Dang Z; Liu Y
    Huan Jing Ke Xue; 2012 Nov; 33(11):3916-21. PubMed ID: 23323425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.