BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16863185)

  • 1. [2+2] Cycloaddition reactions of ethylene derivatives with the Si(100)-2 x 1 surface: a theoretical study.
    Wang Y; Ma J; Inagaki S; Pei Y
    J Phys Chem B; 2005 Mar; 109(11):5199-206. PubMed ID: 16863185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study on reactions of nitroethylene with the Si(100)-2 x 1 surface.
    Wang Y; Ma J
    J Phys Chem B; 2006 Mar; 110(11):5542-6. PubMed ID: 16539494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diradical mechanism for the [2 + 2] cycloaddition of ethylene on Si(100) surface.
    Lu X
    J Am Chem Soc; 2003 May; 125(21):6384-5. PubMed ID: 12785775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of surface cycloadditions of ethylene and 2-butene on the Si(100)-2 x 1 surface.
    Lee HS; Choi CH; Gordon MS
    J Phys Chem B; 2005 Mar; 109(11):5067-72. PubMed ID: 16863167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diradical mechanisms for the cycloaddition reactions of 1,3-butadiene, benzene, thiophene, ethylene, and acetylene on a Si(111)-7x7 surface.
    Lu X; Wang X; Yuan Q; Zhang Q
    J Am Chem Soc; 2003 Jul; 125(26):7923-9. PubMed ID: 12823013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor mediated cycloaddition reaction of ethylene to the Si(100)c(4 x 2) surface.
    Nagao M; Umeyama H; Mukai K; Yamashita Y; Yoshinobu J; Akagi K; Tsuneyuki S
    J Am Chem Soc; 2004 Aug; 126(32):9922-3. PubMed ID: 15303857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DFT study of the pericyclic/pseudopericyclic character of cycloaddition reactions of ethylene and formaldehyde to buta-1,3-dien-1-one and derivatives.
    Cabaleiro-Lago EM; Rodríguez-Otero J; González-López I; Peña-Gallego A; Hermida-Ramón JM
    J Phys Chem A; 2005 Jun; 109(25):5636-44. PubMed ID: 16833896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of C-H and N-H sigma-bond activation reactions by titinium(IV)-imido complex. Good understanding based on orbital interaction and theoretical proposal for N-H sigma-bond activation of ammonia.
    Ochi N; Nakao Y; Sato H; Sakaki S
    J Am Chem Soc; 2007 Jul; 129(27):8615-24. PubMed ID: 17579411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of cycloaddition reactions of heavy carbenes with C60.
    Lan CY; Su MD
    J Phys Chem A; 2007 Jul; 111(28):6232-40. PubMed ID: 17591759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of the self-initiation mechanism in thermal polymerization of methyl acrylate.
    Srinivasan S; Lee MW; Grady MC; Soroush M; Rappe AM
    J Phys Chem A; 2009 Oct; 113(40):10787-94. PubMed ID: 19791812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation.
    Ess DH; Hayden AE; Klärner FG; Houk KN
    J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel substituent effects on the mechanism of the thermal denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives, stepwise versus concerted.
    Abe M; Ishihara C; Kawanami S; Masuyama A
    J Am Chem Soc; 2005 Jan; 127(1):10-1. PubMed ID: 15631423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the mechanisms of [3+2] cycloaddition reactions of trimetallaallenes [[double bond splayed left]M=M=M [double bond splayed right]] (M=C, Si, Ge, Sn, and Pb).
    Sheu JH; Su MD
    Dalton Trans; 2010 Oct; 39(39):9337-46. PubMed ID: 20730164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 Catalyst.
    Wells DH; Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2006 Aug; 110(30):14627-39. PubMed ID: 16869565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the internal elimination reactions of xanthate precursors.
    Claes L; François JP; Deleuze MS
    J Comput Chem; 2003 Dec; 24(16):2023-31. PubMed ID: 14531056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined experimental and computational studies on carbon-carbon reductive elimination from Bis(hydrocarbyl) complexes of (PCP)Ir.
    Ghosh R; Emge TJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2008 Aug; 130(34):11317-27. PubMed ID: 18680287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition structures of the ene reactions of cyclopropene.
    Deng Q; Thomas BE; Houk KN; Dowd P
    J Am Chem Soc; 1997 Jul; 119(29):6902-8. PubMed ID: 24236571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.