These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16863219)
1. How to distinguish energetic surface heterogeneity from electrostatic interactions in the case of hydrogen ion adsorption from solution onto oxides. Piasecki W Langmuir; 2006 Aug; 22(16):6761-3. PubMed ID: 16863219 [TBL] [Abstract][Full Text] [Related]
2. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. Zarzycki P; Charmas R; Szabelski P J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of metal ions adsorption at heterogeneous solid/solution interfaces: A theoretical treatment based on statistical rate theory. Rudzinski W; Plazinski W J Colloid Interface Sci; 2008 Nov; 327(1):36-43. PubMed ID: 18760418 [TBL] [Abstract][Full Text] [Related]
4. Application of the statistical rate theory of interfacial transport to interpret the relaxation time of proton adsorption from solution onto oxides. Piasecki W J Phys Chem B; 2006 Jul; 110(26):13138-43. PubMed ID: 16805625 [TBL] [Abstract][Full Text] [Related]
5. Role of the surface heterogeneity in adsorption of hydrogen ions on metal oxides: theory and simulations. Zarzycki P; Szabelski P; Charmas R J Comput Chem; 2005 Jul; 26(10):1079-88. PubMed ID: 15898108 [TBL] [Abstract][Full Text] [Related]
6. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions. Zarzycki P J Colloid Interface Sci; 2007 Jul; 311(2):622-7. PubMed ID: 17449056 [TBL] [Abstract][Full Text] [Related]
7. Sorption of two aromatic acids onto iron oxides: experimental study and modeling. Hanna K J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153 [TBL] [Abstract][Full Text] [Related]
9. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution. Moradi O; Aghaie M; Zare K; Monajjemi M; Aghaie H J Hazard Mater; 2009 Oct; 170(2-3):673-9. PubMed ID: 19497662 [TBL] [Abstract][Full Text] [Related]
10. Consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution models. Xia X; Litvinov S; Muhler M Langmuir; 2006 Sep; 22(19):8063-70. PubMed ID: 16952242 [TBL] [Abstract][Full Text] [Related]
11. Molecular modeling of oligopeptide adsorption onto functionalized quartz surfaces. Forte G; Grassi A; Marletta G J Phys Chem B; 2007 Sep; 111(38):11237-43. PubMed ID: 17803297 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation. Saito T; Koopal LK; Nagasaki S; Tanaka S J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380 [TBL] [Abstract][Full Text] [Related]
13. Adsorption properties of tea polyphenols onto three polymeric adsorbents with amide group. Huang J; Huang K; Liu S; Luo Q; Xu M J Colloid Interface Sci; 2007 Nov; 315(2):407-14. PubMed ID: 17681514 [TBL] [Abstract][Full Text] [Related]
14. What really enhances the adsorption of polymers onto chemically nonuniform surfaces: surface randomness or its heterogeneity? Chervanyov AI; Heinrich G J Chem Phys; 2006 Aug; 125(8):084703. PubMed ID: 16965035 [TBL] [Abstract][Full Text] [Related]
15. Investigations into the mechanism of adsorption of carbon nanotubes onto aminopropylsiloxane functionalized surfaces. Burgin TP; Lewenstein JC; Werho D Langmuir; 2005 Jul; 21(14):6596-602. PubMed ID: 15982073 [TBL] [Abstract][Full Text] [Related]
16. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution. Nieszporek K; Szabelski P; Drach M Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463 [TBL] [Abstract][Full Text] [Related]
17. Variation in surface energy heterogeneity of graphite due to adsorption of polyoxyethylene sorbitan monooleate. Hou Q; Lu X; Liu X; Hu B; Yuan J; Shen J J Colloid Interface Sci; 2004 Dec; 280(1):98-101. PubMed ID: 15476779 [TBL] [Abstract][Full Text] [Related]
18. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Sari A; Tuzen M; Citak D; Soylak M J Hazard Mater; 2007 Sep; 148(1-2):387-94. PubMed ID: 17386972 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface. Zarzycki P Langmuir; 2006 Dec; 22(26):11234-40. PubMed ID: 17154609 [TBL] [Abstract][Full Text] [Related]
20. Impact factors and thermodynamic characteristics of aquatic humic acid loaded onto kaolin. Qinyan Y; Ying L; Baoyu G Colloids Surf B Biointerfaces; 2009 Sep; 72(2):241-7. PubMed ID: 19442497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]