These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16863299)

  • 1. Excess electron localization sites in neutral water clusters.
    Turi L; Madarász A; Rossky PJ
    J Chem Phys; 2006 Jul; 125(1):014308. PubMed ID: 16863299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of localization sites for an excess electron in neutral methanol clusters using approximate pseudopotential quantum-mechanical calculations.
    Mones L; Rossky PJ; Turi L
    J Chem Phys; 2010 Oct; 133(14):144510. PubMed ID: 20950020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron solvation in water-ammonia mixed clusters: Structure, energetics, and the nature of localization states of the excess electron.
    Pratihar S; Chandra A
    J Chem Phys; 2007 Jun; 126(23):234510. PubMed ID: 17600428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of observables for cold anionic water clusters to cluster thermal history.
    Madarász A; Rossky PJ; Turi L
    J Phys Chem A; 2010 Feb; 114(6):2331-7. PubMed ID: 20099860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum-classical simulation of electron localization in negatively charged methanol clusters.
    Mones L; Rossky PJ; Turi L
    J Chem Phys; 2011 Aug; 135(8):084501. PubMed ID: 21895193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interior- and surface-bound excess electron states in large water cluster anions.
    Madarász A; Rossky PJ; Turi L
    J Chem Phys; 2009 Mar; 130(12):124319. PubMed ID: 19334842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of excess electrons in water-cluster anions by quantum simulations.
    Turi L; Sheu WS; Rossky PJ
    Science; 2005 Aug; 309(5736):914-7. PubMed ID: 16081731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelization of the fragmentation dynamics of krypton clusters (Kr(n),n=2-11) following electron impact ionization.
    Bonhommeau D; Bouissou T; Halberstadt N; Viel A
    J Chem Phys; 2006 Apr; 124(16):164308. PubMed ID: 16674136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pd(n) (n=1-6) clusters in mordenite.
    Grybos R; Benco L; Bucko T; Hafner J
    J Chem Phys; 2009 Mar; 130(10):104503. PubMed ID: 19292537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration dynamics in water clusters via quantum molecular dynamics simulations.
    Turi L
    J Chem Phys; 2014 May; 140(20):204317. PubMed ID: 24880290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron hydration dynamics in water clusters: A direct ab initio molecular dynamics approach.
    Tachikawa H
    J Chem Phys; 2006 Oct; 125(14):144307. PubMed ID: 17042590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excess electron relaxation dynamics at water/air interfaces.
    Madarász A; Rossky PJ; Turi L
    J Chem Phys; 2007 Jun; 126(23):234707. PubMed ID: 17600435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical study of the microsolvation of sodium atoms in methanol clusters: differences and similarities to sodium-water and sodium-ammonia.
    Dauster I; Suhm MA; Buck U; Zeuch T
    Phys Chem Chem Phys; 2008 Jan; 10(1):83-95. PubMed ID: 18075686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron binding motifs of (H2O)n- clusters.
    Sommerfeld T; Jordan KD
    J Am Chem Soc; 2006 May; 128(17):5828-33. PubMed ID: 16637652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structures, energetics, and electronic properties of neutral and charged Hg(n) clusters (n = 2-8).
    Kang J; Kim J; Ihee H; Lee YS
    J Phys Chem A; 2010 May; 114(18):5630-9. PubMed ID: 20402486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electronic properties of neutral and ionic Ga(n)On clusters with n = 4-7.
    Deshpande M; Kanhere DG; Pandey R
    J Phys Chem A; 2006 Mar; 110(10):3814-9. PubMed ID: 16526667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab Initio Molecular Dynamics Simulations of Solvated Electrons in Ammonia Clusters.
    Baranyi B; Turi L
    J Phys Chem B; 2020 Aug; 124(33):7205-7216. PubMed ID: 32697593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.