These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16863326)

  • 21. The surface structure of ionic liquids: comparing simulations with x-ray measurements.
    Sloutskin E; Lynden-Bell RM; Balasubramanian S; Deutsch M
    J Chem Phys; 2006 Nov; 125(17):174715. PubMed ID: 17100469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An inherent structure view of liquid-vapor interfaces.
    Stillinger FH
    J Chem Phys; 2008 May; 128(20):204705. PubMed ID: 18513040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and dynamics of water at a clay surface from molecular dynamics simulation.
    Marry V; Rotenberg B; Turq P
    Phys Chem Chem Phys; 2008 Aug; 10(32):4802-13. PubMed ID: 18688523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydration structure on crystalline silica substrates.
    Argyris D; Cole DR; Striolo A
    Langmuir; 2009 Jul; 25(14):8025-35. PubMed ID: 19456184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classical density functional theory of orientational order at interfaces: application to water.
    Jaqaman K; Tuncay K; Ortoleva PJ
    J Chem Phys; 2004 Jan; 120(2):926-38. PubMed ID: 15267929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface tension and phase coexistence for fluids of molecules with extended dipoles.
    Sánchez-Arellano E; Benavides AL; Alejandre J
    J Chem Phys; 2012 Sep; 137(11):114708. PubMed ID: 22998282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water/hydrocarbon interfaces: effect of hydrocarbon branching on single-molecule relaxation.
    Chowdhary J; Ladanyi BM
    J Phys Chem B; 2008 May; 112(19):6259-73. PubMed ID: 18324803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary waves at the liquid-vapor interface and the surface tension of water.
    Ismail AE; Grest GS; Stevens MJ
    J Chem Phys; 2006 Jul; 125(1):014702. PubMed ID: 16863319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics study of the n-hexane-water interface: towards a better understanding of the liquid-liquid interfacial broadening.
    Nicolas JP; de Souza NR
    J Chem Phys; 2004 Feb; 120(5):2464-9. PubMed ID: 15268387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods.
    Hantal G; Voroshylova I; Cordeiro MN; Jorge M
    Phys Chem Chem Phys; 2012 Apr; 14(15):5200-13. PubMed ID: 22415038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacial layering and capillary roughness in immiscible liquids.
    Geysermans P; Pontikis V
    J Chem Phys; 2010 Aug; 133(7):074706. PubMed ID: 20726662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of electrolyte solutions at the (100) goethite surface.
    Kerisit S; Ilton ES; Parker SC
    J Phys Chem B; 2006 Oct; 110(41):20491-501. PubMed ID: 17034235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface tension and scaling of critical nuclei in diatomic and triatomic fluids.
    Napari I; Laaksonen A
    J Chem Phys; 2007 Apr; 126(13):134503. PubMed ID: 17430043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsic profiles beyond the capillary wave theory: a Monte Carlo study.
    Chacón E; Tarazona P
    Phys Rev Lett; 2003 Oct; 91(16):166103. PubMed ID: 14611420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation.
    Maolin S; Fuchun Z; Guozhong W; Haiping F; Chunlei W; Shimou C; Yi Z; Jun H
    J Chem Phys; 2008 Apr; 128(13):134504. PubMed ID: 18397074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The changing hydrogen-bond network of water from the bulk to the surface of a cluster: a born-oppenheimer molecular dynamics study.
    Galamba N; Cabral BJ
    J Am Chem Soc; 2008 Dec; 130(52):17955-60. PubMed ID: 19049430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics study of the interface between water and 2-nitrophenyl octyl ether.
    Jorge M; Cordeiro MN
    J Phys Chem B; 2008 Feb; 112(8):2415-29. PubMed ID: 18247602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarization model for poorly-organized interfacial water: hydration forces between silica surfaces.
    Manciu M; Calvo O; Ruckenstein E
    Adv Colloid Interface Sci; 2006 Nov; 127(1):29-42. PubMed ID: 17022933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interface between platinum(111) and liquid isopropanol (2-propanol): a model for molecular dynamics studies.
    Tarmyshov KB; Müller-Plathe F
    J Chem Phys; 2007 Feb; 126(7):074702. PubMed ID: 17328622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomistic simulations of a solid/liquid interface: a combined force field and first principles approach to the structure and dynamics of acetonitrile near an anatase surface.
    Schiffmann F; Hutter J; Vandevondele J
    J Phys Condens Matter; 2008 Feb; 20(6):064206. PubMed ID: 21693868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.