These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16863396)

  • 1. Module-based analysis of robustness tradeoffs in the heat shock response system.
    Kurata H; El-Samad H; Iwasaki R; Ohtake H; Doyle JC; Grigorova I; Gross CA; Khammash M
    PLoS Comput Biol; 2006 Jul; 2(7):e59. PubMed ID: 16863396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse engineering: the architecture of biological networks.
    Khammash M
    Biotechniques; 2008 Mar; 44(3):323-9. PubMed ID: 18361784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks.
    El-Samad H; Khammash M
    Biophys J; 2006 May; 90(10):3749-61. PubMed ID: 16500958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surviving heat shock: control strategies for robustness and performance.
    El-Samad H; Kurata H; Doyle JC; Gross CA; Khammash M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2736-41. PubMed ID: 15668395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
    Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA
    Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circuit architecture explains functional similarity of bacterial heat shock responses.
    Inoue M; Mitarai N; Trusina A
    Phys Biol; 2012 Dec; 9(6):066003. PubMed ID: 23114274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological design principles of complex feedback modules in the E. coli ammonia assimilation system.
    Masaki K; Maeda K; Kurata H
    Artif Life; 2012; 18(1):53-90. PubMed ID: 22035079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular components of physiological stress responses in Escherichia coli.
    Wick LM; Egli T
    Adv Biochem Eng Biotechnol; 2004; 89():1-45. PubMed ID: 15217154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock.
    Vilaprinyo E; Alves R; Sorribas A
    BMC Bioinformatics; 2006 Apr; 7():184. PubMed ID: 16584550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chaperone network controls the heat shock response in E. coli.
    Guisbert E; Herman C; Lu CZ; Gross CA
    Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
    Guisbert E; Yura T; Rhodius VA; Gross CA
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks.
    Lilburn TG; Cai H; Gu J; Zhou Z; Wang Y
    Int J Comput Biol Drug Des; 2014; 7(4):369-83. PubMed ID: 25539848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli.
    Hoffmann F; Rinas U
    Adv Biochem Eng Biotechnol; 2004; 89():143-61. PubMed ID: 15217158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC).
    Lenz G; Ron EZ
    J Mol Biol; 2014 Jan; 426(2):460-6. PubMed ID: 24148697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose response relationship in anti-stress gene regulatory networks.
    Zhang Q; Andersen ME
    PLoS Comput Biol; 2007 Mar; 3(3):e24. PubMed ID: 17335342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent proteolysis as a control element in Escherichia coli metabolism.
    Katz C; Rasouly A; Gur E; Shenhar Y; Biran D; Ron EZ
    Res Microbiol; 2009 Nov; 160(9):684-6. PubMed ID: 19770038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.