These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1686453)

  • 21. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes.
    Takeda N; Dixon IM; Hata T; Elimban V; Shah KR; Dhalla NS
    Diabetes Res Clin Pract; 1996 Feb; 30 Suppl():113-22. PubMed ID: 8964185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of thyroid status on postnatal maturation of calcium channels, beta-adrenoceptors and cation transport ATPases in rat ventricular tissue.
    Wibo M; Kilar F; Zheng L; Godfraind T
    J Mol Cell Cardiol; 1995 Aug; 27(8):1731-43. PubMed ID: 8523434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane proteins of the myocytes in cardiac overload.
    Mansier P; Chevalier B; Mayoux E; Charlemagne D; Ollivier L; Callens-el Amrani F; Swynghedauw B
    Acta Cardiol; 1991; 46(3):299-307. PubMed ID: 1656672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of myocardial remodeling.
    Swynghedauw B
    Physiol Rev; 1999 Jan; 79(1):215-62. PubMed ID: 9922372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure. The pacing-overdrive dog.
    Calderone A; Bouvier M; Li K; Juneau C; de Champlain J; Rouleau JL
    Circ Res; 1991 Aug; 69(2):332-43. PubMed ID: 1650296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the genetic expression of membrane proteins as a determinant of myocardial dysfunction.
    Swynghedauw B
    Acta Cardiol; 1996; 51(4):301-14. PubMed ID: 8888889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence against a regulation of Na+/K(+)-ATPase by Gi proteins. Failure to detect an influence of G proteins on Na+/Ca(2+)-exchange in cardiac sarcolemmal membranes.
    Mura RA; Zeifang F; Piacentini L; Kübler W; Rauch B; Niroomand F
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):505-12. PubMed ID: 8740143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.
    Feldman AM; Gordon J; Wang J; Song J; Zhang XQ; Myers VD; Tilley DG; Gao E; Hoffman NE; Tomar D; Madesh M; Rabinowitz J; Koch WJ; Su F; Khalili K; Cheung JY
    J Mol Cell Cardiol; 2016 Mar; 92():10-20. PubMed ID: 26796036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Hypertrophy, a physiological adaptation of the heart to a disease].
    Swynghedauw B; Schwartz K
    Arch Mal Coeur Vaiss; 1983 Nov; 76(11):1249-51. PubMed ID: 6318679
    [No Abstract]   [Full Text] [Related]  

  • 30. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling.
    Galougahi KK; Liu CC; Bundgaard H; Rasmussen HH
    Trends Cardiovasc Med; 2012 May; 22(4):83-7. PubMed ID: 23040838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Chronic cardiac insufficiency, a disease of adaptation].
    Swynghedauw B
    C R Seances Soc Biol Fil; 1992; 186(4):332-41. PubMed ID: 1301220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vasostatin-1 Stops Structural Remodeling and Improves Calcium Handling via the eNOS-NO-PKG Pathway in Rat Hearts Subjected to Chronic β-Adrenergic Receptor Activation.
    Wang D; Shan Y; Huang Y; Tang Y; Chen Y; Li R; Yang J; Huang C
    Cardiovasc Drugs Ther; 2016 Oct; 30(5):455-464. PubMed ID: 27595734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Chronic heart failure: biological bases of myocardial function].
    Swynghedauw B; Rabenou S; Carré F
    Presse Med; 1992 Mar; 21(10):475-81. PubMed ID: 1316602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular smooth muscle function and its changes in hypertension.
    Bohr DF; Webb RC
    Am J Med; 1984 Oct; 77(4A):3-16. PubMed ID: 6091449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endogenous and exogenous cardiac glycosides and their mechanisms of action.
    Schoner W; Scheiner-Bobis G
    Am J Cardiovasc Drugs; 2007; 7(3):173-89. PubMed ID: 17610345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of calcium transport in cardiac cells.
    Shamoo AE; Ambudkar IS
    Can J Physiol Pharmacol; 1984 Jan; 62(1):9-22. PubMed ID: 6143603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The beta-adrenergic regulation of the Na, K-ATPase activity in the sarcolemma of the heart muscle].
    Osadchaia LM; Mugula Zh; Stefanov VE
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (6):138-47. PubMed ID: 2169911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700.
    Fu Y; Westenbroek RE; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16598-603. PubMed ID: 25368181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.