BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 16864654)

  • 1. Mannose receptor regulates myoblast motility and muscle growth.
    Jansen KM; Pavlath GK
    J Cell Biol; 2006 Jul; 174(3):403-13. PubMed ID: 16864654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion.
    Hochreiter-Hufford AE; Lee CS; Kinchen JM; Sokolowski JD; Arandjelovic S; Call JA; Klibanov AL; Yan Z; Mandell JW; Ravichandran KS
    Nature; 2013 May; 497(7448):263-7. PubMed ID: 23615608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD44 regulates myoblast migration and differentiation.
    Mylona E; Jones KA; Mills ST; Pavlath GK
    J Cell Physiol; 2006 Nov; 209(2):314-21. PubMed ID: 16906571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth.
    Si Y; Wen H; Du S
    Mar Biotechnol (NY); 2019 Feb; 21(1):111-123. PubMed ID: 30467785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth.
    Horsley V; Jansen KM; Mills ST; Pavlath GK
    Cell; 2003 May; 113(4):483-94. PubMed ID: 12757709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
    Goh Q; Dearth CL; Corbett JT; Pierre P; Chadee DN; Pizza FX
    Exp Cell Res; 2015 Feb; 331(2):292-308. PubMed ID: 25281303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannose receptor regulation of macrophage cell migration.
    Sturge J; Todd SK; Kogianni G; McCarthy A; Isacke CM
    J Leukoc Biol; 2007 Sep; 82(3):585-93. PubMed ID: 17596337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration.
    Park SY; Yun Y; Lim JS; Kim MJ; Kim SY; Kim JE; Kim IS
    Nat Commun; 2016 Mar; 7():10871. PubMed ID: 26972991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.
    Teng S; Stegner D; Chen Q; Hongu T; Hasegawa H; Chen L; Kanaho Y; Nieswandt B; Frohman MA; Huang P
    Mol Biol Cell; 2015 Feb; 26(3):506-17. PubMed ID: 25428992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion.
    Stupka N; Kintakas C; White JD; Fraser FW; Hanciu M; Aramaki-Hattori N; Martin S; Coles C; Collier F; Ward AC; Apte SS; McCulloch DR
    J Biol Chem; 2013 Jan; 288(3):1907-17. PubMed ID: 23233679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion.
    Eigler T; Zarfati G; Amzallag E; Sinha S; Segev N; Zabary Y; Zaritsky A; Shakked A; Umansky KB; Schejter ED; Millay DP; Tzahor E; Avinoam O
    Dev Cell; 2021 Dec; 56(24):3349-3363.e6. PubMed ID: 34932950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine kinase B is necessary to limit myoblast fusion during myogenesis.
    Simionescu-Bankston A; Pichavant C; Canner JP; Apponi LH; Wang Y; Steeds C; Olthoff JT; Belanto JJ; Ervasti JM; Pavlath GK
    Am J Physiol Cell Physiol; 2015 Jun; 308(11):C919-31. PubMed ID: 25810257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms regulating myoblast fusion: A multilevel interplay.
    Lehka L; Rędowicz MJ
    Semin Cell Dev Biol; 2020 Aug; 104():81-92. PubMed ID: 32063453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.
    Hicks MR; Cao TV; Campbell DH; Standley PR
    J Appl Physiol (1985); 2012 Aug; 113(3):465-72. PubMed ID: 22678963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts.
    Ferreira JH; Cury SS; Vechetti-Júnior IJ; Fernandez GJ; Moraes LN; Alves CAB; Freire PP; Freitas CEA; Dal-Pai-Silva M; Carvalho RF
    Lasers Med Sci; 2018 Nov; 33(8):1673-1683. PubMed ID: 29717386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of myoblast motility and fusion by the CXCR4-associated sialomucin, CD164.
    Bae GU; Gaio U; Yang YJ; Lee HJ; Kang JS; Krauss RS
    J Biol Chem; 2008 Mar; 283(13):8301-9. PubMed ID: 18227060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle.
    Ohtake Y; Tojo H; Seiki M
    J Cell Sci; 2006 Sep; 119(Pt 18):3822-32. PubMed ID: 16926191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.