BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 16864654)

  • 21. RhoE controls myoblast alignment prior fusion through RhoA and ROCK.
    Fortier M; Comunale F; Kucharczak J; Blangy A; Charrasse S; Gauthier-Rouvière C
    Cell Death Differ; 2008 Aug; 15(8):1221-31. PubMed ID: 18369372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6.
    Chen EH; Pryce BA; Tzeng JA; Gonzalez GA; Olson EN
    Cell; 2003 Sep; 114(6):751-62. PubMed ID: 14505574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Normal myoblast fusion requires myoferlin.
    Doherty KR; Cave A; Davis DB; Delmonte AJ; Posey A; Earley JU; Hadhazy M; McNally EM
    Development; 2005 Dec; 132(24):5565-75. PubMed ID: 16280346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration.
    Georgiadis V; Stewart HJ; Pollard HJ; Tavsanoglu Y; Prasad R; Horwood J; Deltour L; Goldring K; Poirier F; Lawrence-Watt DJ
    Dev Dyn; 2007 Apr; 236(4):1014-24. PubMed ID: 17366633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired Skeletal Muscle Development and Regeneration in Transglutaminase 2 Knockout Mice.
    Budai Z; Al-Zaeed N; Szentesi P; Halász H; Csernoch L; Szondy Z; Sarang Z
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD36 is required for myoblast fusion during myogenic differentiation.
    Park SY; Yun Y; Kim IS
    Biochem Biophys Res Commun; 2012 Nov; 427(4):705-10. PubMed ID: 23036201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle regeneration involves macrophage-myoblast bonding.
    Ceafalan LC; Fertig TE; Popescu AC; Popescu BO; Hinescu ME; Gherghiceanu M
    Cell Adh Migr; 2018 May; 12(3):228-235. PubMed ID: 28759306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro.
    Uaesoontrachoon K; Yoo HJ; Tudor EM; Pike RN; Mackie EJ; Pagel CN
    Int J Biochem Cell Biol; 2008; 40(10):2303-14. PubMed ID: 18490187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIV-1 Nef mediates post-translational down-regulation and redistribution of the mannose receptor.
    Vigerust DJ; Egan BS; Shepherd VL
    J Leukoc Biol; 2005 Apr; 77(4):522-34. PubMed ID: 15637102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration.
    Lei H; Leong D; Smith LR; Barton ER
    Am J Physiol Cell Physiol; 2013 Sep; 305(5):C529-38. PubMed ID: 23761625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure.
    Dalkilic I; Schienda J; Thompson TG; Kunkel LM
    Mol Cell Biol; 2006 Sep; 26(17):6522-34. PubMed ID: 16914736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pctaire1/Cdk16 promotes skeletal myogenesis by inducing myoblast migration and fusion.
    Shimizu K; Uematsu A; Imai Y; Sawasaki T
    FEBS Lett; 2014 Aug; 588(17):3030-7. PubMed ID: 24931367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered secondary myogenesis in transgenic animals expressing the neural cell adhesion molecule under the control of a skeletal muscle alpha-actin promoter.
    Fazeli S; Wells DJ; Hobbs C; Walsh FS
    J Cell Biol; 1996 Oct; 135(1):241-51. PubMed ID: 8858177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes.
    Kim H; Jeong JH; Fendereski M; Lee HS; Kang DY; Hur SS; Amirian J; Kim Y; Pham NT; Suh N; Hwang NS; Ryu S; Yoon JK; Hwang Y
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33801235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conserved role for calpains during myoblast fusion.
    Buffolo M; Batista Possidonio AC; Mermelstein C; Araujo H
    Genesis; 2015 Jul; 53(7):417-30. PubMed ID: 26138338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly.
    Berendse M; Grounds MD; Lloyd CM
    Exp Cell Res; 2003 Dec; 291(2):435-50. PubMed ID: 14644165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulation of myoblast plasticity and its mechanism.
    Zhang P; Chen XP
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov; 28(6):524-31. PubMed ID: 23581181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.
    Kurosaka M; Ogura Y; Funabashi T; Akema T
    J Cell Physiol; 2016 Oct; 231(10):2275-85. PubMed ID: 26892397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells.
    Miyake M; Hayashi S; Iwasaki S; Uchida T; Watanabe K; Ohwada S; Aso H; Yamaguchi T
    J Cell Physiol; 2011 Apr; 226(4):1128-36. PubMed ID: 20945337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.