These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 16864654)

  • 41. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.
    Kim GW; Park SY; Kim IS
    BMB Rep; 2016 Jun; 49(6):303-4. PubMed ID: 27174501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation.
    Lee JH; Kosinski PA; Kemp DM
    Exp Cell Res; 2005 Jul; 307(1):174-82. PubMed ID: 15922737
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of Muscle-Specific Ribosomal Protein L3-Like Impairs Myotube Growth.
    Chaillou T; Zhang X; McCarthy JJ
    J Cell Physiol; 2016 Sep; 231(9):1894-902. PubMed ID: 26684695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell fusion in skeletal muscle--central role of NFATC2 in regulating muscle cell size.
    Pavlath GK; Horsley V
    Cell Cycle; 2003; 2(5):420-3. PubMed ID: 12963831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures.
    Gorbe A; Krenacs T; Cook JE; Becker DL
    Exp Cell Res; 2007 Apr; 313(6):1135-48. PubMed ID: 17331498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Cloning and Functional Characterization of Mannose Receptor in Zebra Fish (Danio rerio) during Infection with Aeromonas sobria.
    Zheng F; Asim M; Lan J; Zhao L; Wei S; Chen N; Liu X; Zhou Y; Lin L
    Int J Mol Sci; 2015 May; 16(5):10997-1012. PubMed ID: 25988382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue.
    Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T
    J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Collagen binding by the mannose receptor mediated through the fibronectin type II domain.
    Napper CE; Drickamer K; Taylor ME
    Biochem J; 2006 May; 395(3):579-86. PubMed ID: 16441238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The absence of MyoD in regenerating skeletal muscle affects the expression pattern of basement membrane, interstitial matrix and integrin molecules that is consistent with delayed myotube formation.
    Huijbregts J; White JD; Grounds MD
    Acta Histochem; 2001 Oct; 103(4):379-96. PubMed ID: 11700944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rock-dependent calponin 3 phosphorylation regulates myoblast fusion.
    Shibukawa Y; Yamazaki N; Daimon E; Wada Y
    Exp Cell Res; 2013 Mar; 319(5):633-48. PubMed ID: 23276748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts.
    Takaya T; Nihashi Y; Kojima S; Ono T; Kagami H
    Anim Sci J; 2017 Nov; 88(11):1880-1885. PubMed ID: 28782148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.
    Gogos JA; Thompson R; Lowry W; Sloane BF; Weintraub H; Horwitz M
    J Cell Biol; 1996 Aug; 134(4):837-47. PubMed ID: 8769410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Galectin-1 is a novel factor that regulates myotube growth in regenerating skeletal muscles.
    Kami K; Senba E
    Curr Drug Targets; 2005 Jun; 6(4):395-405. PubMed ID: 16026258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology.
    Shafey D; Côté PD; Kothary R
    Exp Cell Res; 2005 Nov; 311(1):49-61. PubMed ID: 16219305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion.
    Bondesen BA; Jones KA; Glasgow WC; Pavlath GK
    FASEB J; 2007 Oct; 21(12):3338-45. PubMed ID: 17488951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends.
    Zhang M; McLennan IS
    Dev Dyn; 1995 Oct; 204(2):168-77. PubMed ID: 8589440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of an in vitro bioassay to monitor growth and formation of myotubes in real time.
    Murphy SM; Kiely M; Jakeman PM; Kiely PA; Carson BP
    Biosci Rep; 2016 Jun; 36(3):. PubMed ID: 27009307
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei.
    Mermelstein CS; Portilho DM; Medeiros RB; Matos AR; Einicker-Lamas M; Tortelote GG; Vieyra A; Costa ML
    Cell Tissue Res; 2005 Feb; 319(2):289-97. PubMed ID: 15549398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells.
    Choi IY; Lim HT; Che YH; Lee G; Kim YJ
    Cells; 2021 Jun; 10(7):. PubMed ID: 34209364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.