These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16865608)

  • 1. Signature function for predicting resonant and attenuant population 2-cycles.
    Franke JE; Yakubu AA
    Bull Math Biol; 2006 Nov; 68(8):2069-104. PubMed ID: 16865608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting attenuant and resonant 2-cycles in periodically forced discrete-time two-species population models.
    Morena MA; Franke JE
    J Biol Dyn; 2012; 6():782-812. PubMed ID: 22873617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Globally attracting attenuant versus resonant cycles in periodic compensatory Leslie models.
    Franke JE; Yakubu AA
    Math Biosci; 2006 Nov; 204(1):1-20. PubMed ID: 17027038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic difference equations, population biology and the Cushing-Henson conjectures.
    Elaydi S; Sacker RJ
    Math Biosci; 2006 May; 201(1-2):195-207. PubMed ID: 16466753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanistic derivation of various discrete-time population models.
    Eskola HT; Geritz SA
    Bull Math Biol; 2007 Jan; 69(1):329-46. PubMed ID: 16838083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanistic underpinning of discrete-time population models with complex dynamics.
    Geritz SA; Kisdi E
    J Theor Biol; 2004 May; 228(2):261-9. PubMed ID: 15094020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the importance of self-regulating mechanisms in diamondback moth population dynamics: application of discrete mathematical models.
    Nedorezov LV; Löhr BL; Sadykova DL
    J Theor Biol; 2008 Oct; 254(3):587-93. PubMed ID: 18662702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note on the nonautonomous delay Beverton-Holt model.
    Kocic VL
    J Biol Dyn; 2010 Mar; 4(2):131-9. PubMed ID: 22876982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of delayed host self-regulation on host-pathogen population cycles in forest insects.
    Xiao Y; Bowers RG; Tang S
    J Theor Biol; 2009 May; 258(2):240-9. PubMed ID: 19490856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On linear perturbations of the Ricker model.
    Braverman E; Kinzebulatov D
    Math Biosci; 2006 Aug; 202(2):323-39. PubMed ID: 16797042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of structured populations in random environments.
    Benaïm M; Schreiber SJ
    Theor Popul Biol; 2009 Aug; 76(1):19-34. PubMed ID: 19358861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic and stable perturbed maps: 2-cycles and spatial models.
    Braverman E; Haroutunian J
    Chaos; 2010 Jun; 20(2):023114. PubMed ID: 20590310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function.
    Shang J; Li B; Barnard MR
    Math Biosci; 2015 May; 263():161-8. PubMed ID: 25765885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodically forced discrete-time SIS epidemic model with disease induced mortality.
    Franke JE; Yakubu AA
    Math Biosci Eng; 2011 Apr; 8(2):385-408. PubMed ID: 21631136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On a periodic-like behavior of a delayed density-dependent branching process.
    Fujimagari T
    Math Biosci; 2007 Mar; 206(1):128-33. PubMed ID: 17070864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of cyclic fluctuations in larch bud moth populations by means of discrete-time dynamic models].
    Nedorezov LV
    Zh Obshch Biol; 2011; 72(2):83-92. PubMed ID: 21542332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamics of a green oak moth population: application of discrete-continuous models with a nonmonotone density-dependent birth rate].
    Nedorezov LV; Sadykov AM; Sadykova DL
    Zh Obshch Biol; 2010; 71(1):41-51. PubMed ID: 20184157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Malthusian parameter and R0 for heterogeneous populations in periodic environments.
    Inaba H
    Math Biosci Eng; 2012 Apr; 9(2):313-46. PubMed ID: 22901067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose-structured population dynamics.
    Ginn TR; Loge FJ
    Math Biosci; 2007 Jul; 208(1):325-43. PubMed ID: 17296208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [On the impact of winter conditions on the dynamics of a population with non-overlapping generations: a model approach].
    Nedorezov LV; Volkova EV
    Zh Obshch Biol; 2005; 66(6):484-90. PubMed ID: 16405192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.