These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16865706)
1. Predicting G-protein coupled receptors-G-protein coupling specificity based on autocross-covariance transform. Guo Y; Li M; Lu M; Wen Z; Huang Z Proteins; 2006 Oct; 65(1):55-60. PubMed ID: 16865706 [TBL] [Abstract][Full Text] [Related]
2. Classification of G proteins and prediction of GPCRs-G proteins coupling specificity using continuous wavelet transform and information theory. Li Z; Zhou X; Dai Z; Zou X Amino Acids; 2012 Aug; 43(2):793-804. PubMed ID: 22086210 [TBL] [Abstract][Full Text] [Related]
3. Predicting the coupling specificity of GPCRs to G-proteins by support vector machines. Guan CP; Jiang ZR; Zhou YH Genomics Proteomics Bioinformatics; 2005 Nov; 3(4):247-51. PubMed ID: 16689694 [TBL] [Abstract][Full Text] [Related]
4. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Lapinsh M; Gutcaits A; Prusis P; Post C; Lundstedt T; Wikberg JE Protein Sci; 2002 Apr; 11(4):795-805. PubMed ID: 11910023 [TBL] [Abstract][Full Text] [Related]
5. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models. Sgourakis NG; Bagos PG; Papasaikas PK; Hamodrakas SJ BMC Bioinformatics; 2005 Apr; 6():104. PubMed ID: 15847681 [TBL] [Abstract][Full Text] [Related]
6. GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model. Yabuki Y; Muramatsu T; Hirokawa T; Mukai H; Suwa M Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W148-53. PubMed ID: 15980445 [TBL] [Abstract][Full Text] [Related]
7. A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins. Cao J; Panetta R; Yue S; Steyaert A; Young-Bellido M; Ahmad S Bioinformatics; 2003 Jan; 19(2):234-40. PubMed ID: 12538244 [TBL] [Abstract][Full Text] [Related]
8. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform. Qiu JD; Huang JH; Liang RP; Lu XQ Anal Biochem; 2009 Jul; 390(1):68-73. PubMed ID: 19364489 [TBL] [Abstract][Full Text] [Related]
9. On the hierarchical classification of G protein-coupled receptors. Davies MN; Secker A; Freitas AA; Mendao M; Timmis J; Flower DR Bioinformatics; 2007 Dec; 23(23):3113-8. PubMed ID: 17956878 [TBL] [Abstract][Full Text] [Related]
10. Prediction of GPCR-G protein coupling specificity using features of sequences and biological functions. Ono T; Hishigaki H Genomics Proteomics Bioinformatics; 2006 Nov; 4(4):238-44. PubMed ID: 17531799 [TBL] [Abstract][Full Text] [Related]
11. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble. Naveed M; Khan A Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826 [TBL] [Abstract][Full Text] [Related]
12. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach. Sugaya N J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509 [TBL] [Abstract][Full Text] [Related]
13. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines. Nie G; Li Y; Wang F; Wang S; Hu X Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954 [TBL] [Abstract][Full Text] [Related]
14. Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks. Sgourakis NG; Bagos PG; Hamodrakas SJ Bioinformatics; 2005 Nov; 21(22):4101-6. PubMed ID: 16174684 [TBL] [Abstract][Full Text] [Related]
15. Fast fourier transform-based support vector machine for prediction of G-protein coupled receptor subfamilies. Guo YZ; Li ML; Wang KL; Wen ZN; Lu MC; Liu LX; Jiang L Acta Biochim Biophys Sin (Shanghai); 2005 Nov; 37(11):759-66. PubMed ID: 16270155 [TBL] [Abstract][Full Text] [Related]
16. A novel and efficient technique for identification and classification of GPCRs. Gupta R; Mittal A; Singh K IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):541-8. PubMed ID: 18632334 [TBL] [Abstract][Full Text] [Related]
17. Prediction of the coupling specificity of G protein coupled receptors to their G proteins. Möller S; Vilo J; Croning MD Bioinformatics; 2001; 17 Suppl 1():S174-81. PubMed ID: 11473007 [TBL] [Abstract][Full Text] [Related]
18. Classifying G protein-coupled receptors and nuclear receptors on the basis of protein power spectrum from fast Fourier transform. Guo YZ; Li M; Lu M; Wen Z; Wang K; Li G; Wu J Amino Acids; 2006 Jun; 30(4):397-402. PubMed ID: 16773242 [TBL] [Abstract][Full Text] [Related]
19. Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features. Fang Y; Guo Y; Feng Y; Li M Amino Acids; 2008 Jan; 34(1):103-9. PubMed ID: 17624492 [TBL] [Abstract][Full Text] [Related]
20. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Xiao X; Wang P; Chou KC Mol Biosyst; 2011 Mar; 7(3):911-9. PubMed ID: 21180772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]