BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16865712)

  • 1. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments.
    Boxberger JI; Sen S; Yerramalli CS; Elliott DM
    J Orthop Res; 2006 Sep; 24(9):1906-15. PubMed ID: 16865712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content.
    Beckstein JC; Sen S; Schaer TP; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2008 Mar; 33(6):E166-73. PubMed ID: 18344845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc.
    Boxberger JI; Auerbach JD; Sen S; Elliott DM
    Spine (Phila Pa 1976); 2008 Jan; 33(2):146-54. PubMed ID: 18197098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical differences between lumbar and tail discs in the mouse.
    Sarver JJ; Elliott DM
    J Orthop Res; 2005 Jan; 23(1):150-5. PubMed ID: 15607887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-endplate nucleotomy increases deformation and creep response in axial loading.
    Johannessen W; Cloyd JM; O'Connell GD; Vresilovic EJ; Elliott DM
    Ann Biomed Eng; 2006 Apr; 34(4):687-96. PubMed ID: 16482409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function.
    Yerramalli CS; Chou AI; Miller GJ; Nicoll SB; Chin KR; Elliott DM
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):13-20. PubMed ID: 16715318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics.
    Cannella M; Arthur A; Allen S; Keane M; Joshi A; Vresilovic E; Marcolongo M
    J Biomech; 2008 Jul; 41(10):2104-11. PubMed ID: 18571654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading.
    Hansson TH; Keller TS; Spengler DM
    J Orthop Res; 1987; 5(4):479-87. PubMed ID: 3681522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vivo model of degenerative disc disease.
    Norcross JP; Lester GE; Weinhold P; Dahners LE
    J Orthop Res; 2003 Jan; 21(1):183-8. PubMed ID: 12507597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat.
    Hoogendoorn RJ; Wuisman PI; Smit TH; Everts VE; Helder MN
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1816-25. PubMed ID: 17762288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method.
    Rohlmann A; Zander T; Schmidt H; Wilke HJ; Bergmann G
    J Biomech; 2006; 39(13):2484-90. PubMed ID: 16198356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension.
    Kurutz M
    J Biomech; 2006; 39(7):1180-90. PubMed ID: 15925372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.