BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16865712)

  • 21. A constitutive modeling of the human lumbar intervertebral disc and forward-backward bending simulation.
    Tadano S; Katagiri K; Umehara S; Ukai T
    Biomed Mater Eng; 1997; 7(3):179-91. PubMed ID: 9262831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics.
    Boxberger JI; Orlansky AS; Sen S; Elliott DM
    J Biomech; 2009 Aug; 42(12):1941-6. PubMed ID: 19539936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Participation of 5-hydroxytryptamine in pain-related behavior induced by nucleus pulposus applied on the nerve root in rats.
    Kato K; Kikuchi S; Konno S; Sekiguchi M
    Spine (Phila Pa 1976); 2008 May; 33(12):1330-6. PubMed ID: 18496345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture.
    Gardner-Morse MG; Stokes IA
    J Orthop Res; 2003 May; 21(3):547-52. PubMed ID: 12706030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The balance point of the intervertebral motion segment: an experimental study.
    Wilder DG; Pope MH; Seroussi RE; Dimnet J; Krag MH
    Bull Hosp Jt Dis Orthop Inst; 1989; 49(2):155-69. PubMed ID: 2557938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study.
    Ruberté LM; Natarajan RN; Andersson GB
    J Biomech; 2009 Feb; 42(3):341-8. PubMed ID: 19136113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression.
    Zhang QH; Zhou YL; Petit D; Teo EC
    Med Eng Phys; 2009 Jun; 31(5):533-8. PubMed ID: 19038569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Expression of Bax and Caspase-3 and apoptosis in human lumbar intervertebral disc degeneration].
    Wang D; Liu M; Song H; Wang M; Yang K; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Apr; 22(4):421-5. PubMed ID: 18575441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function.
    Hsieh AH; Hwang D; Ryan DA; Freeman AK; Kim H
    Spine (Phila Pa 1976); 2009 May; 34(10):998-1005. PubMed ID: 19404174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degenerative mechanics of the lumbar spine.
    Niosi CA; Oxland TR
    Spine J; 2004; 4(6 Suppl):202S-208S. PubMed ID: 15541668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of neuropathic pain induced by the application of normal and mechanically compressed nucleus pulposus to lumbar nerve roots in the rat.
    Kawakami M; Hashizume H; Nishi H; Matsumoto T; Tamaki T; Kuribayashi K
    J Orthop Res; 2003 May; 21(3):535-9. PubMed ID: 12706028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical and rheological characterization of mild intervertebral disc degeneration in a large animal model.
    Detiger SE; Hoogendoorn RJ; van der Veen AJ; van Royen BJ; Helder MN; Koenderink GH; Smit TH
    J Orthop Res; 2013 May; 31(5):703-9. PubMed ID: 23255234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis.
    Ito T; Ohtori S; Inoue G; Koshi T; Doya H; Ozawa T; Saito T; Moriya H; Takahashi K
    Spine (Phila Pa 1976); 2007 Jan; 32(2):159-67. PubMed ID: 17224809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F; Schmitt H; Schmidt H; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):737-44. PubMed ID: 17561321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging.
    Iatridis JC; Setton LA; Weidenbaum M; Mow VC
    J Orthop Res; 1997 Mar; 15(2):318-22. PubMed ID: 9167638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental determination of spinal motion segment behavior.
    Panjabi MM
    Orthop Clin North Am; 1977 Jan; 8(1):169-80. PubMed ID: 857224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model.
    Murrell W; Sanford E; Anderberg L; Cavanagh B; Mackay-Sim A
    Spine J; 2009 Jul; 9(7):585-94. PubMed ID: 19345615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elastin content correlates with human disc degeneration in the anulus fibrosus and nucleus pulposus.
    Cloyd JM; Elliott DM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1826-31. PubMed ID: 17762289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aging spine: the role of inflammatory mediators in intervertebral disc degeneration.
    Podichetty VK
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(5):4-18. PubMed ID: 17543240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.