BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 1686573)

  • 1. XAMI and DCDM, agonists at cAMP-associated octopamine receptors in cockroach nerve cord, produce centrally mediated antinociception in mice.
    Raffa RB; Orr N; Connelly CD; Hollingworth RM
    Brain Res; 1991 Sep; 559(2):211-9. PubMed ID: 1686573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of formamidines with octopamine-sensitive adenylate cyclase receptor in the nerve cord of Periplaneta americana L.
    Gole JW; Orr GL; Downer RG
    Life Sci; 1983 Jun; 32(26):2939-47. PubMed ID: 6306370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central administration of p-octopamine to mice: assessment of antinociception.
    Raffa RB; Mathiasen JR; Goode TL
    Eur J Pharmacol; 1989 Oct; 169(2-3):317-20. PubMed ID: 2509222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The involvement of opioidergic and noradrenergic mechanisms in nefopam antinociception.
    Gray AM; Nevinson MJ; Sewell RD
    Eur J Pharmacol; 1999 Jan; 365(2-3):149-57. PubMed ID: 9988097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenyliminoimidazolidines. Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors.
    Nathanson JA
    Mol Pharmacol; 1985 Sep; 28(3):254-68. PubMed ID: 2993848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-demethylchlordimeform: a potent partial agonist of octopamine-sensitive adenylate cyclase.
    Nathanson JA; Hunnicutt EJ
    Mol Pharmacol; 1981 Jul; 20(1):68-75. PubMed ID: 6270539
    [No Abstract]   [Full Text] [Related]  

  • 7. Centrally-mediated antinociceptive action of RWJ-22757 (formerly McN-5195): involvement of spinal descending inhibitory pathways (an hypothesis).
    Vaught JL; Raffa RB
    Life Sci; 1991; 48(23):2233-41. PubMed ID: 2046456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrathecal morphine and clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure.
    Solomon RE; Gebhart GF
    J Pharmacol Exp Ther; 1988 May; 245(2):444-54. PubMed ID: 3367301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal interactions between opioid and noradrenergic agonists in mice: multiplicativity involves delta and alpha-2 receptors.
    Roerig SC; Lei S; Kitto K; Hylden JK; Wilcox GL
    J Pharmacol Exp Ther; 1992 Jul; 262(1):365-74. PubMed ID: 1378095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tramadol antinociception is potentiated by clonidine through α₂-adrenergic and I₂-imidazoline but not by endothelin ET(A) receptors in mice.
    Andurkar SV; Gendler L; Gulati A
    Eur J Pharmacol; 2012 May; 683(1-3):109-15. PubMed ID: 22449379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an 'atypical' opioid analgesic.
    Raffa RB; Friderichs E; Reimann W; Shank RP; Codd EE; Vaught JL
    J Pharmacol Exp Ther; 1992 Jan; 260(1):275-85. PubMed ID: 1309873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of supraspinal GABA receptors in majonoside-R2 suppression of clonidine-induced antinociception in mice.
    Nguyen TT; Matsumoto K; Yamasaki K; Watanabe H
    Life Sci; 1997; 61(4):427-36. PubMed ID: 9244369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for spinal, but not supraspinal, alpha(2) adrenergic receptors in the actions of improgan, a powerful, non-opioid analgesic.
    Svokos K; Nalwalk JW; Leurs R; Menge WM; Timmerman H; Hough LB
    Brain Res; 2001 Dec; 923(1-2):12-9. PubMed ID: 11743967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of anandamide- and fluoroanandamide-induced antinociception and cross-tolerance to delta 9-THC after intrathecal administration to mice: blockade of delta 9-THC-induced antinociception.
    Welch SP; Dunlow LD; Patrick GS; Razdan RK
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1235-44. PubMed ID: 7791096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociceptive response to nitrous oxide is mediated by supraspinal opiate and spinal alpha 2 adrenergic receptors in the rat.
    Guo TZ; Poree L; Golden W; Stein J; Fujinaga M; Maze M
    Anesthesiology; 1996 Oct; 85(4):846-52. PubMed ID: 8873555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The noradrenaline precursor L-threo-3,4-dihydroxyphenylserine exhibits antinociceptive activity via central alpha-adrenoceptors in the mouse.
    Kawabata A; Kasamatsu K; Umeda N; Takagi H
    Br J Pharmacol; 1994 Feb; 111(2):503-8. PubMed ID: 7911717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats.
    Iwamoto ET; Marion L
    J Pharmacol Exp Ther; 1993 Jul; 266(1):329-38. PubMed ID: 8101218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moxonidine, a selective alpha2-adrenergic and imidazoline receptor agonist, produces spinal antinociception in mice.
    Fairbanks CA; Wilcox GL
    J Pharmacol Exp Ther; 1999 Jul; 290(1):403-12. PubMed ID: 10381806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests.
    Andurkar SV; Reniguntala MS; Gulati A; DeRuiter J
    Bioorg Med Chem Lett; 2014 Jan; 24(2):644-8. PubMed ID: 24360563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antinociceptive properties of intrathecal dexmedetomidine in rats.
    Fisher B; Zornow MH; Yaksh TL; Peterson BM
    Eur J Pharmacol; 1991 Jan; 192(2):221-5. PubMed ID: 1674472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.