BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 16865753)

  • 1. Activating an enzyme by an engineered coiled coil switch.
    Yuzawa S; Mizuno T; Tanaka T
    Chemistry; 2006 Sep; 12(28):7345-52. PubMed ID: 16865753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-ion-dependent GFP emission in vivo by combining a circularly permutated green fluorescent protein with an engineered metal-ion-binding coiled-coil.
    Mizuno T; Murao K; Tanabe Y; Oda M; Tanaka T
    J Am Chem Soc; 2007 Sep; 129(37):11378-83. PubMed ID: 17722917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, folding, and activities of metal-assembled coiled coil proteins.
    Doerr AJ; McLendon GL
    Inorg Chem; 2004 Dec; 43(25):7916-25. PubMed ID: 15578825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation.
    Meier M; Padilla GP; Herrmann H; Wedig T; Hergt M; Patel TR; Stetefeld J; Aebi U; Burkhard P
    J Mol Biol; 2009 Jul; 390(2):245-61. PubMed ID: 19422834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic ligand binding by a hydrophobic cavity in a designed tetrameric coiled-coil protein.
    Mizuno T; Hasegawa C; Tanabe Y; Hamajima K; Muto T; Nishi Y; Oda M; Kobayashi Y; Tanaka T
    Chemistry; 2009; 15(6):1491-8. PubMed ID: 19115294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo design of a pentameric coiled-coil: decoding the motif for tetramer versus pentamer formation in water-soluble phospholamban.
    Slovic AM; Lear JD; DeGrado WF
    J Pept Res; 2005 Mar; 65(3):312-21. PubMed ID: 15787961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting metastable coiled-coil domains by computational design.
    Barth P; Schoeffler A; Alber T
    J Am Chem Soc; 2008 Sep; 130(36):12038-44. PubMed ID: 18698842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of a buried salt bridge by phage display.
    Vagt T; Jäckel C; Samsonov S; Teresa Pisabarro M; Koksch B
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3924-7. PubMed ID: 19369078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new expression system for protein crystallization using trimeric coiled-coil adaptors.
    Hernandez Alvarez B; Hartmann MD; Albrecht R; Lupas AN; Zeth K; Linke D
    Protein Eng Des Sel; 2008 Jan; 21(1):11-8. PubMed ID: 18093992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein design of a bacterially expressed HIV-1 gp41 fusion inhibitor.
    Deng Y; Zheng Q; Ketas TJ; Moore JP; Lu M
    Biochemistry; 2007 Apr; 46(14):4360-9. PubMed ID: 17371053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimeric coiled-coil domain of human pulmonary surfactant protein D enhances zinc-binding ability and biologic activity of soluble TRAIL.
    Wu X; Li P; Qian C; Li O; Zhou Y
    Mol Immunol; 2009 Jul; 46(11-12):2381-8. PubMed ID: 19481806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a pH-responsive artificial membrane fusion system by using designed coiled-coil polypeptides.
    Kashiwada A; Matsuda K; Mizuno T; Tanaka T
    Chemistry; 2008; 14(24):7343-50. PubMed ID: 18626873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and stability of a novel coiled-coil peptide.
    Wei X; Zeng XG; Zhou HM
    Int J Biol Macromol; 2007 Jan; 40(2):83-6. PubMed ID: 16844213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectional and mutational scope of peptides sequestering the Jun-Fos coiled-coil domain.
    Hagemann UB; Mason JM; Müller KM; Arndt KM
    J Mol Biol; 2008 Aug; 381(1):73-88. PubMed ID: 18586270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of ErbB2 epitope targeting fusion protein stabilized by coiled coil structure.
    Wang J; Feng J; Shi M; Qian L; Chen L; Yu M; Xu R; Shen B; Guo N
    Mol Immunol; 2008 Jan; 45(1):106-16. PubMed ID: 17572496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of terminal residues on circularly permutated Escherichia coli alkaline phosphatase with high specific activity.
    Kojima M; Ayabe K; Ueda H
    J Biosci Bioeng; 2005 Aug; 100(2):197-202. PubMed ID: 16198264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational specificity of the lac repressor coiled-coil tetramerization domain.
    Liu J; Zheng Q; Deng Y; Li Q; Kallenbach NR; Lu M
    Biochemistry; 2007 Dec; 46(51):14951-9. PubMed ID: 18052214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.