These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 16866408)
1. Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants. Xu S; Irle S; Musaev DG; Lin MC J Phys Chem A; 2005 Oct; 109(42):9563-72. PubMed ID: 16866408 [TBL] [Abstract][Full Text] [Related]
2. Quantum chemical prediction of reaction pathways and rate constants for dissociative adsorption of CO(x) and NO(x) on the graphite (0001) surface. Xu SC; Irle S; Musaev DG; Lin MC J Phys Chem B; 2006 Oct; 110(42):21135-44. PubMed ID: 17048937 [TBL] [Abstract][Full Text] [Related]
3. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation study of water adsorption on hydroxylated graphite surfaces. Picaud S; Collignon B; Hoang PN; Rayez JC J Phys Chem B; 2006 Apr; 110(16):8398-408. PubMed ID: 16623525 [TBL] [Abstract][Full Text] [Related]
5. Ionic hydrogen-bond networks and ion solvation. 1. An efficient Monte Carlo/quantum mechanical method for structural search and energy computations: ammonium/water. Zhao YL; Meot-Ner Mautner M; Gonzalez C J Phys Chem A; 2009 Mar; 113(12):2967-74. PubMed ID: 19243164 [TBL] [Abstract][Full Text] [Related]
6. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. Choi TH; Jordan KD J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189 [TBL] [Abstract][Full Text] [Related]
7. DFT/CC investigation of physical adsorption on a graphite (0001) surface. Rubes M; Kysilka J; Nachtigall P; Bludský O Phys Chem Chem Phys; 2010 Jun; 12(24):6438-44. PubMed ID: 20428580 [TBL] [Abstract][Full Text] [Related]
8. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. Rapacioli M; Spiegelman F; Talbi D; Mineva T; Goursot A; Heine T; Seifert G J Chem Phys; 2009 Jun; 130(24):244304. PubMed ID: 19566150 [TBL] [Abstract][Full Text] [Related]
9. The vibrational spectra of protonated water clusters: a benchmark for self-consistent-charge density-functional tight binding. Yu H; Cui Q J Chem Phys; 2007 Dec; 127(23):234504. PubMed ID: 18154397 [TBL] [Abstract][Full Text] [Related]
10. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature. Douady J; Calvo F; Spiegelman F J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen-bonded structures of pyrrole-solvent clusters: infrared cavity ringdown spectroscopy and quantum chemical calculations. Matsumoto Y; Honma K J Chem Phys; 2009 Feb; 130(5):054311. PubMed ID: 19206977 [TBL] [Abstract][Full Text] [Related]
12. Interaction energy of a water molecule with a single-layer graphitic surface modeled by hydrogen- and fluorine-terminated clusters. Sudiarta IW; Geldart DJ J Phys Chem A; 2006 Sep; 110(35):10501-6. PubMed ID: 16942056 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of hydroxyl radical generation from a silica surface: molecular orbital calculations. Narayanasamy J; Kubicki JD J Phys Chem B; 2005 Nov; 109(46):21796-807. PubMed ID: 16853831 [TBL] [Abstract][Full Text] [Related]
14. Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. Krüger T; Elstner M; Schiffels P; Frauenheim T J Chem Phys; 2005 Mar; 122(11):114110. PubMed ID: 15836204 [TBL] [Abstract][Full Text] [Related]
15. Origin of the attraction in aliphatic C-H/pi interactions: infrared spectroscopic and theoretical characterization of gas-phase clusters of aromatics with methane. Morita S; Fujii A; Mikami N; Tsuzuki S J Phys Chem A; 2006 Sep; 110(36):10583-90. PubMed ID: 16956240 [TBL] [Abstract][Full Text] [Related]
16. Alternative low-energy mechanisms for isotopic exchange in gas-phase D2O-H+(H2O)n reactions. Mella M; Ponti A Chemphyschem; 2006 Apr; 7(4):894-903. PubMed ID: 16596613 [TBL] [Abstract][Full Text] [Related]
17. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice. Lenz A; Ojamäe L J Chem Phys; 2009 Oct; 131(13):134302. PubMed ID: 19814548 [TBL] [Abstract][Full Text] [Related]
18. Quantum chemical studies of the adsorption of single acetone molecules on hexagonal ice I(h) and cubic ice I(c). Somnitz H Phys Chem Chem Phys; 2009 Feb; 11(7):1033-42. PubMed ID: 19543600 [TBL] [Abstract][Full Text] [Related]
19. Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes. Kysilka J; Rubeš M; Grajciar L; Nachtigall P; Bludský O J Phys Chem A; 2011 Oct; 115(41):11387-93. PubMed ID: 21809813 [TBL] [Abstract][Full Text] [Related]
20. Simulation of water cluster assembly on a graphite surface. Lin CS; Zhang RQ; Lee ST; Elstner M; Frauenheim T; Wan LJ J Phys Chem B; 2005 Jul; 109(29):14183-8. PubMed ID: 16852781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]