These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16866451)

  • 1. Requirements for the formation of a chiral template.
    Stacchiola D; Burkholder L; Zheng T; Weinert M; Tysoe WT
    J Phys Chem B; 2005 Jan; 109(2):851-6. PubMed ID: 16866451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral templating of surfaces: adsorption of (S)-2-methylbutanoic acid on Pt(111) single-crystal surfaces.
    Lee I; Zaera F
    J Am Chem Soc; 2006 Jul; 128(27):8890-8. PubMed ID: 16819884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.
    Mahapatra M; Tysoe WT
    Phys Chem Chem Phys; 2015 Feb; 17(7):5450-8. PubMed ID: 25615560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective chemisorption of propylene oxide on a 2-butanol modified Pd(111) surface: the role of hydrogen-bonding interactions.
    Gao F; Wang Y; Burkholder L; Tysoe WT
    J Am Chem Soc; 2007 Dec; 129(49):15240-9. PubMed ID: 18001023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.
    Cheong WY; Huang Y; Dangaria N; Gellman AJ
    Langmuir; 2010 Nov; 26(21):16412-23. PubMed ID: 20973584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselectivity of adsorption sites created by chiral 2-butanol adsorbed on Pt(111) single-crystal surfaces.
    Lee I; Zaera F
    J Phys Chem B; 2005 Jul; 109(26):12920-6. PubMed ID: 16852604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-(1-Naphthyl)ethylamine adsorption on platinum surfaces: on the mechanism of chiral modification in catalysis.
    Lee I; Ma Z; Kaneko S; Zaera F
    J Am Chem Soc; 2008 Nov; 130(44):14597-604. PubMed ID: 18847203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective chemisorption on a chirally modified surface in ultrahigh vacuum: adsorption of propylene oxide on 2-butoxide-covered palladium(111).
    Stacchiola D; Burkholder L; Tysoe WT
    J Am Chem Soc; 2002 Jul; 124(30):8984-9. PubMed ID: 12137554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.
    Dementyev P; Peter M; Adamovsky S; Schauermann S
    Phys Chem Chem Phys; 2015 Sep; 17(35):22726-35. PubMed ID: 26256836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).
    Barlow SM; Louafi S; Le Roux D; Williams J; Muryn C; Haq S; Raval R
    Langmuir; 2004 Aug; 20(17):7171-6. PubMed ID: 15301502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyte templating: enhancing the enantioselectivity of chiral selectors upon incorporation into organic polymer environments.
    Gavioli E; Maier NM; Haupt K; Mosbach K; Lindner W
    Anal Chem; 2005 Aug; 77(15):5009-18. PubMed ID: 16053316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling chiral organization of molecular rods on Au(111) by molecular design.
    Knudsen MM; Kalashnyk N; Masini F; Cramer JR; Lægsgaard E; Besenbacher F; Linderoth TR; Gothelf KV
    J Am Chem Soc; 2011 Apr; 133(13):4896-905. PubMed ID: 21401127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended surface chirality for enantiospecific adsorption.
    Szabelski P
    Chemistry; 2008; 14(27):8312-21. PubMed ID: 18645995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective separation on chiral Au nanoparticles.
    Shukla N; Bartel MA; Gellman AJ
    J Am Chem Soc; 2010 Jun; 132(25):8575-80. PubMed ID: 20521789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral self-dimerization of vanadium complexes on a SiO2 surface for asymmetric catalytic coupling of 2-naphthol: structure, performance, and mechanism.
    Tada M; Kojima N; Izumi Y; Taniike T; Iwasawa Y
    J Phys Chem B; 2005 May; 109(20):9905-16. PubMed ID: 16852198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity.
    Berkessel A; Brandenburg M
    Org Lett; 2006 Sep; 8(20):4401-4. PubMed ID: 16986910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral separation on a model adsorbent with periodic surface heterogeneity.
    Szabelski P; Sholl DS
    J Chem Phys; 2007 Apr; 126(14):144709. PubMed ID: 17444734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselectivity in random deposition processes on template surfaces.
    López RH; Romá F; Gargiulo V; Sales JL; Zgrablich G
    J Phys Chem B; 2008 Jul; 112(29):8619-23. PubMed ID: 18590306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bond-induced pair formation of glycine on the chiral Cu{531} surface.
    Eralp T; Shavorskiy A; Zheleva ZV; Dhanak VR; Held G
    Langmuir; 2010 Jul; 26(13):10918-23. PubMed ID: 20527828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.