These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16866461)

  • 1. How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?
    Cameron PJ; Peter LM; Hore S
    J Phys Chem B; 2005 Jan; 109(2):930-6. PubMed ID: 16866461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.
    Xia J; Masaki N; Jiang K; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25222-8. PubMed ID: 17165966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film.
    Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI
    Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells.
    Xia J; Masaki N; Jiang K; Yanagida S
    Chem Commun (Camb); 2007 Jan; (2):138-40. PubMed ID: 17180225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes.
    Hara K; Miyamoto K; Abe Y; Yanagida M
    J Phys Chem B; 2005 Dec; 109(50):23776-8. PubMed ID: 16375359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method to protect charge recombination in the back-contact dye-sensitized solar cell.
    Yoo B; Kim KJ; Lee DK; Kim K; Ko MJ; Kim YH; Kim WM; Park NG
    Opt Express; 2010 Sep; 18 Suppl 3():A395-402. PubMed ID: 21165069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells.
    Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G
    J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye-sensitized solar cells based on nanocrystalline TiO2 films surface treated with Al3+ ions: photovoltage and electron transport studies.
    Alarcón H; Boschloo G; Mendoza P; Solis JL; Hagfeldt A
    J Phys Chem B; 2005 Oct; 109(39):18483-90. PubMed ID: 16853380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple.
    Nakade S; Kanzaki T; Kubo W; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2005 Mar; 109(8):3480-7. PubMed ID: 16851382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides.
    Yum JH; Nakade S; Kim DY; Yanagida S
    J Phys Chem B; 2006 Feb; 110(7):3215-9. PubMed ID: 16494331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode.
    Mei X; Cho SJ; Fan B; Ouyang J
    Nanotechnology; 2010 Oct; 21(39):395202. PubMed ID: 20820098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.