These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16866468)

  • 41. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination.
    Shen XZ; Liu ZC; Xie SM; Guo J
    J Hazard Mater; 2009 Mar; 162(2-3):1193-8. PubMed ID: 18614280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH.
    Imanishi A; Okamura T; Ohashi N; Nakamura R; Nakato Y
    J Am Chem Soc; 2007 Sep; 129(37):11569-78. PubMed ID: 17722924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Searching for new TiO₂ crystal phases with better photoactivity.
    Shang C; Zhao WN; Liu ZP
    J Phys Condens Matter; 2015 Apr; 27(13):134203. PubMed ID: 25767097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications.
    Zhu Q; Qian J; Pan H; Tu L; Zhou X
    Nanotechnology; 2011 Sep; 22(39):395703. PubMed ID: 21891858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis.
    Liu B; Khare A; Aydil ES
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4444-50. PubMed ID: 22008419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. N3-dye-induced visible laser anatase-to-rutile phase transition on mesoporous TiO2 films.
    Parussulo AL; Huila MF; Araki K; Toma HE
    Langmuir; 2011 Aug; 27(15):9094-9. PubMed ID: 21707061
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanostructuring cadmium germanate catalysts for photocatalytic oxidation of benzene at ambient conditions.
    Huang J; Ding K; Wang X; Fu X
    Langmuir; 2009 Jul; 25(14):8313-9. PubMed ID: 19594191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2.
    Mi Y; Weng Y
    Sci Rep; 2015 Jul; 5():11482. PubMed ID: 26169699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO.
    Yan W; Chen B; Mahurin SM; Schwartz V; Mullins DR; Lupini AR; Pennycook SJ; Dai S; Overbury SH
    J Phys Chem B; 2005 Jun; 109(21):10676-85. PubMed ID: 16852296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide.
    Wang H; Wu Z; Liu Y; Wang Y
    Chemosphere; 2009 Feb; 74(6):773-8. PubMed ID: 19091376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO₂ solar photocatalyst using Mn(II) as 'anatase phase purifier'.
    Ullattil SG; Periyat P
    Nanoscale; 2015 Dec; 7(45):19184-92. PubMed ID: 26523536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of Dissociatively Adsorbed Water on the Formation of Shallow Trapped Electrons in TiO
    Litke A; Hensen EJM; Hofmann JP
    J Phys Chem C Nanomater Interfaces; 2017 May; 121(18):10153-10162. PubMed ID: 28529675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core.
    Yang D; Zhao J; Liu H; Zheng Z; Adebajo MO; Wang H; Liu X; Zhang H; Zhao JC; Bell J; Zhu H
    Chemistry; 2013 Apr; 19(16):5113-9. PubMed ID: 23417892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxygen induced enhancement of NIR emission in brookite TiO
    Vequizo JJM; Kamimura S; Ohno T; Yamakata A
    Phys Chem Chem Phys; 2018 Jan; 20(5):3241-3248. PubMed ID: 29105714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites.
    Byrne HE; Mazyck DW
    J Hazard Mater; 2009 Oct; 170(2-3):915-9. PubMed ID: 19520505
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoexcited charge carrier dynamics of interconnected TiO
    Shingai D; Ide Y; Sohn WY; Katayama K
    Phys Chem Chem Phys; 2018 Jan; 20(5):3484-3489. PubMed ID: 29335704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces.
    Chang JG; Wang J; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6746-54. PubMed ID: 17447738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation.
    Zhou J; Takeuchi M; Ray AK; Anpo M; Zhao XS
    J Colloid Interface Sci; 2007 Jul; 311(2):497-501. PubMed ID: 17416386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions.
    Kumar A; Mathur N
    J Colloid Interface Sci; 2006 Aug; 300(1):244-52. PubMed ID: 16707132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity.
    Janus M; Choina J; Morawski AW
    J Hazard Mater; 2009 Jul; 166(1):1-5. PubMed ID: 19097698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.