BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

928 related articles for article (PubMed ID: 16866538)

  • 1. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate.
    Latifi R; Bagherzadeh M; de Visser SP
    Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum chemical studies of C-H activation reactions by high-valent nonheme iron centers.
    Ye S; Neese F
    Curr Opin Chem Biol; 2009 Feb; 13(1):89-98. PubMed ID: 19272830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W
    Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate.
    Grzyska PK; Ryle MJ; Monterosso GR; Liu J; Ballou DP; Hausinger RP
    Biochemistry; 2005 Mar; 44(10):3845-55. PubMed ID: 15751960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of hydrogen by deuterium changes the regioselectivity of ethylbenzene hydroxylation by an oxo-iron-porphyrin catalyst.
    de Visser SP
    Chemistry; 2006 Oct; 12(31):8168-77. PubMed ID: 16871510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the peroxosuccinate complex in the catalytic cycle of taurine/alpha-ketoglutarate dioxygenase (TauD) act as an alternative oxidant?
    de Visser SP
    Chem Commun (Camb); 2007 Jan; (2):171-3. PubMed ID: 17180236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the mu-oxo-mu-peroxodiiron intermediate of a ribonucleotide reductase biomimetic a possible oxidant of epoxidation reactions?
    de Visser SP
    Chemistry; 2008; 14(15):4533-41. PubMed ID: 18386299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does the push/pull effect of the axial ligand influence the catalytic properties of Compound I of catalase and cytochrome P450?
    Wang R; de Visser SP
    J Inorg Biochem; 2007 Oct; 101(10):1464-72. PubMed ID: 17659781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.