BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16866606)

  • 21. Cytochrome P450 3A polymorphisms and immunosuppressive drugs.
    Thervet E; Legendre C; Beaune P; Anglicheau D
    Pharmacogenomics; 2005 Jan; 6(1):37-47. PubMed ID: 15723604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between mRNA expression levels of CYP3A4, CYP3A5 and SXR in peripheral mononuclear blood cells and aging in young kidney transplant recipients under tacrolimus treatment.
    Ferraresso M; Turolo S; Belingheri M; Tirelli AS; Cortinovis I; Milani S; Edefonti A; Ghio L
    Pharmacogenomics; 2015; 16(5):483-91. PubMed ID: 25916520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients.
    Shi Y; Li Y; Tang J; Zhang J; Zou Y; Cai B; Wang L
    Gene; 2013 Jan; 512(2):226-31. PubMed ID: 23107770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients.
    Loh PT; Lou HX; Zhao Y; Chin YM; Vathsala A
    Transplant Proc; 2008 Jun; 40(5):1690-5. PubMed ID: 18589174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.
    Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH
    Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus.
    Kamdem LK; Streit F; Zanger UM; Brockmöller J; Oellerich M; Armstrong VW; Wojnowski L
    Clin Chem; 2005 Aug; 51(8):1374-81. PubMed ID: 15951320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CYP3A and ABCB1 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tacrolimus and its metabolites (M-I and M-III).
    Yoon SH; Cho JH; Kwon O; Choi JY; Park SH; Kim YL; Yoon YR; Won DI; Kim CD
    Transplantation; 2013 Mar; 95(6):828-34. PubMed ID: 23364483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients.
    Santoro AB; Struchiner CJ; Felipe CR; Tedesco-Silva H; Medina-Pestana JO; Suarez-Kurtz G
    Clin Pharmacol Ther; 2013 Aug; 94(2):201-2. PubMed ID: 23588314
    [No Abstract]   [Full Text] [Related]  

  • 29. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients.
    Elens L; Hesselink DA; Bouamar R; Budde K; de Fijter JW; De Meyer M; Mourad M; Kuypers DR; Haufroid V; van Gelder T; van Schaik RH
    Ther Drug Monit; 2014 Feb; 36(1):71-9. PubMed ID: 24061445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response to "CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients".
    de Jonge H; Kuypers DR
    Clin Pharmacol Ther; 2013 Aug; 94(2):202-3. PubMed ID: 23665867
    [No Abstract]   [Full Text] [Related]  

  • 32. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase.
    Aouam K; Kolsi A; Kerkeni E; Ben Fredj N; Chaabane A; Monastiri K; Boughattas N
    Pharmacogenomics; 2015 Dec; 16(18):2045-54. PubMed ID: 26615671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients.
    Kuypers DR; de Jonge H; Naesens M; Lerut E; Verbeke K; Vanrenterghem Y
    Clin Pharmacol Ther; 2007 Dec; 82(6):711-25. PubMed ID: 17495880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Switching Immunosuppression From Cyclosporine to Tacrolimus in Kidney Transplant Recipients Based on CYP3A5 Genotyping.
    Wang X; Yang Y; Liu Z; Xiao C; Gao L; Zhang W; Zhang W; Wang Z
    Ther Drug Monit; 2019 Feb; 41(1):97-101. PubMed ID: 30520827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Term Influence of CYP3A5, CYP3A4, ABCB1, and NR1I2 Polymorphisms on Tacrolimus Concentration in Chinese Renal Transplant Recipients.
    Liu F; Ou YM; Yu AR; Xiong L; Xin HW
    Genet Test Mol Biomarkers; 2017 Nov; 21(11):663-673. PubMed ID: 28945481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients.
    Elens L; van Schaik RH; Panin N; de Meyer M; Wallemacq P; Lison D; Mourad M; Haufroid V
    Pharmacogenomics; 2011 Oct; 12(10):1383-96. PubMed ID: 21902502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients.
    Crettol S; Venetz JP; Fontana M; Aubert JD; Pascual M; Eap CB
    Ther Drug Monit; 2008 Dec; 30(6):689-99. PubMed ID: 18978522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacogenetic study of ABCB1 and CYP3A5 genes during the first year following heart transplantation regarding tacrolimus or cyclosporine levels.
    Jordán de Luna C; Herrero Cervera MJ; Sánchez Lázaro I; Almenar Bonet L; Poveda Andrés JL; Aliño Pellicer SF
    Transplant Proc; 2011; 43(6):2241-3. PubMed ID: 21839244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit.
    de Jonge H; Vanhove T; de Loor H; Verbeke K; Kuypers DR
    Br J Clin Pharmacol; 2015 Sep; 80(3):548-59. PubMed ID: 26114223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients.
    Uesugi M; Hosokawa M; Shinke H; Hashimoto E; Takahashi T; Kawai T; Matsubara K; Ogawa K; Fujimoto Y; Okamoto S; Kaido T; Uemoto S; Masuda S
    Biol Pharm Bull; 2013; 36(11):1814-21. PubMed ID: 24189425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.