These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16866616)

  • 1. Respirometric Screening Technology for ADME-Tox studies.
    Papkovsky DB; Hynes J; Will Y
    Expert Opin Drug Metab Toxicol; 2006 Apr; 2(2):313-23. PubMed ID: 16866616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Analysis of Mitochondrial Oxygen Consumption.
    Hynes J; Swiss RL; Will Y
    Methods Mol Biol; 2018; 1782():71-87. PubMed ID: 29850994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury.
    Wills LP; Beeson GC; Trager RE; Lindsey CC; Beeson CC; Peterson YK; Schnellmann RG
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):490-502. PubMed ID: 23811330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity.
    Hynes J; Hill R; Papkovsky DB
    Toxicol In Vitro; 2006 Aug; 20(5):785-92. PubMed ID: 16386874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-ADME/Tox: resources and network approaches.
    Ekins S
    J Pharmacol Toxicol Methods; 2006; 53(1):38-66. PubMed ID: 16054403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent pH and oxygen probes of the assessment of mitochondrial toxicity in isolated mitochondria and whole cells.
    Hynes J; Natoli E; Will Y
    Curr Protoc Toxicol; 2009 May; Chapter 2():Unit 2.16. PubMed ID: 20941697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-Based Microplate Assays for In Vitro Assessment of Mitochondrial Toxicity, Metabolic Perturbation, and Cellular Oxygenation.
    Hynes J; Carey C; Will Y
    Curr Protoc Toxicol; 2016 Nov; 70():2.16.1-2.16.30. PubMed ID: 27801935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods.
    Tsaioun K; Blaauboer BJ; Hartung T
    ALTEX; 2016; 33(4):343-358. PubMed ID: 27806179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxic effects of 109 reference compounds on rat H4IIE and human HepG2 hepatocytes. III: Mechanistic assays on oxygen consumption with MitoXpress and NAD(P)H production with Alamar Blue™.
    Schoonen WG; Stevenson JC; Westerink WM; Horbach GJ
    Toxicol In Vitro; 2012 Apr; 26(3):511-25. PubMed ID: 22261204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses.
    Lee MY; Park CB; Dordick JS; Clark DS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(4):983-7. PubMed ID: 15657119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity.
    Ekins S; Nikolsky Y; Nikolskaya T
    Trends Pharmacol Sci; 2005 Apr; 26(4):202-9. PubMed ID: 15808345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro preclinical lead optimisation technologies (PLOTs) in pharmaceutical development.
    Atterwill CK; Wing MG
    Toxicol Lett; 2002 Feb; 127(1-3):143-51. PubMed ID: 12052652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes.
    Will Y; Hynes J; Ogurtsov VI; Papkovsky DB
    Nat Protoc; 2006; 1(6):2563-72. PubMed ID: 17406510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents.
    Datta S; Sahdeo S; Gray JA; Morriseau C; Hammock BD; Cortopassi G
    Mitochondrion; 2016 Nov; 31():79-83. PubMed ID: 27717841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution respirometry--a modern tool in aging research.
    Hütter E; Unterluggauer H; Garedew A; Jansen-Dürr P; Gnaiger E
    Exp Gerontol; 2006 Jan; 41(1):103-9. PubMed ID: 16309877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety?
    Pereira CV; Moreira AC; Pereira SP; Machado NG; Carvalho FS; Sardão VA; Oliveira PJ
    Curr Drug Saf; 2009 Jan; 4(1):34-54. PubMed ID: 19149524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mitochondrial dysfunction and drug safety.
    Nadanaciva S; Will Y
    IDrugs; 2009 Nov; 12(11):706-10. PubMed ID: 19844857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of human drug metabolism.
    Ekins S; Andreyev S; Ryabov A; Kirillov E; Rakhmatulin EA; Bugrim A; Nikolskaya T
    Expert Opin Drug Metab Toxicol; 2005 Aug; 1(2):303-24. PubMed ID: 16922645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects.
    Sahdeo S; Tomilov A; Komachi K; Iwahashi C; Datta S; Hughes O; Hagerman P; Cortopassi G
    Mitochondrion; 2014 Jul; 17():116-25. PubMed ID: 25034306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies.
    O'Mahony FC; O'Donovan C; Hynes J; Moore T; Davenport J; Papkovsky DB
    Environ Sci Technol; 2005 Jul; 39(13):5010-4. PubMed ID: 16053104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.