These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16866622)

  • 1. Enhanced catecholamine synthesis in the prefrontal cortex after traumatic brain injury: implications for prefrontal dysfunction.
    Kobori N; Clifton GL; Dash PK
    J Neurotrauma; 2006 Jul; 23(7):1094-102. PubMed ID: 16866622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction.
    Kobori N; Hu B; Dash PK
    Neuroscience; 2011 Jan; 172():293-302. PubMed ID: 20974230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered regulation of protein kinase a activity in the medial prefrontal cortex of normal and brain-injured animals actively engaged in a working memory task.
    Kobori N; Moore AN; Dash PK
    J Neurotrauma; 2015 Jan; 32(2):139-48. PubMed ID: 25027811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive mild traumatic brain injury impairs norepinephrine system function and psychostimulant responsivity.
    Horvat L; Foschini A; Grinias JP; Waterhouse BD; Devilbiss DM
    Brain Res; 2024 Sep; 1839():149040. PubMed ID: 38815643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.
    Lee YA; Goto Y
    Behav Brain Res; 2015 Jun; 286():122-7. PubMed ID: 25746453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels.
    Bongiovanni R; Newbould E; Jaskiw GE
    Brain Res; 2008 Jan; 1190():39-48. PubMed ID: 18082673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of catecholamine innervation in the medial prefrontal cortex on the regulation of body weight and food intake.
    Gálosi R; Hajnal A; Petykó Z; Hartmann G; Karádi Z; Lénárd L
    Behav Brain Res; 2015 Jun; 286():318-27. PubMed ID: 25783808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent working memory dysfunction following traumatic brain injury: evidence for a time-dependent mechanism.
    Hoskison MM; Moore AN; Hu B; Orsi S; Kobori N; Dash PK
    Neuroscience; 2009 Mar; 159(2):483-91. PubMed ID: 19167462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function.
    Berridge CW; Devilbiss DM; Andrzejewski ME; Arnsten AF; Kelley AE; Schmeichel B; Hamilton C; Spencer RC
    Biol Psychiatry; 2006 Nov; 60(10):1111-20. PubMed ID: 16806100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anxiety caused by traumatic brain injury correlates to decreased prefrontal cortex VEGF immunoreactivity and neuron density in immature rats.
    Baykara B; Cetin F; Baykara B; Aksu I; Dayi A; Kiray M; Sisman AR; Ozdemir D; Arda MN; Uysal N
    Turk Neurosurg; 2012; 22(5):604-10. PubMed ID: 23015338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbations in risk/reward decision making and frontal cortical catecholamine regulation induced by mild traumatic brain injury.
    Knapp CP; Papadopoulos E; Loweth JA; Raghupathi R; Floresco SB; Waterhouse BD; Navarra RL
    Behav Brain Res; 2024 Jun; 467():115002. PubMed ID: 38636779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals.
    Miner LH; Schroeter S; Blakely RD; Sesack SR
    J Comp Neurol; 2003 Nov; 466(4):478-94. PubMed ID: 14566944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of brain injury-induced prefrontal glutamic acid decarboxylase expression and working memory deficits by D1 receptor antagonism.
    Kobori N; Dash PK
    J Neurosci; 2006 Apr; 26(16):4236-46. PubMed ID: 16624944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute pancreatitis affects the metabolism of catecholamine neurotransmitters in rats.
    Jiang H; Li F; Liu S; Sun H; Cui Y; Wu Y
    Neuroscience; 2014 May; 268():112-7. PubMed ID: 24657461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential increase of extracellular dopamine and serotonin in the 'prefrontal cortex' and striatum of pigeons during working memory.
    Karakuyu D; Herold C; Güntürkün O; Diekamp B
    Eur J Neurosci; 2007 Oct; 26(8):2293-302. PubMed ID: 17908172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
    Hoover WB; Vertes RP
    Brain Struct Funct; 2007 Sep; 212(2):149-79. PubMed ID: 17717690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates.
    Perlstein WM; Cole MA; Demery JA; Seignourel PJ; Dixit NK; Larson MJ; Briggs RW
    J Int Neuropsychol Soc; 2004 Sep; 10(5):724-41. PubMed ID: 15327720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered prefrontal-striatal theta-band oscillatory dynamics underlie working memory deficits in neuropathic pain rats.
    Cardoso-Cruz H; Laranjeira I; Monteiro C; Galhardo V
    Eur J Pain; 2022 Aug; 26(7):1546-1568. PubMed ID: 35603472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth.
    El-Khodor BF; Boksa P
    Exp Neurol; 1997 May; 145(1):118-29. PubMed ID: 9184115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex.
    Marsteller DA; Gerasimov MR; Schiffer WK; Geiger JM; Barnett CR; Schaich Borg J; Scott S; Ceccarelli J; Volkow ND; Molina PE; Alexoff DL; Dewey SL
    Neuropsychopharmacology; 2002 Aug; 27(2):163-70. PubMed ID: 12093590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.