These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1686762)

  • 1. Pharmacological evidence for the role of mediators in hypoxia-induced vasoconstriction in sheep isolated intrapulmonary artery rings.
    Demiryurek AT; Wadsworth RM; Kane KA
    Eur J Pharmacol; 1991 Oct; 203(1):1-8. PubMed ID: 1686762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of tyrosine kinase in hypoxic constriction of sheep pulmonary artery rings.
    Uzun O; Demiryürek AT; Kanzik I
    Eur J Pharmacol; 1998 Sep; 358(1):41-7. PubMed ID: 9809867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of endothelium in hypoxic constriction of human pulmonary artery rings.
    Demiryurek AT; Wadsworth RM; Kane KA; Peacock AJ
    Am Rev Respir Dis; 1993 Feb; 147(2):283-90. PubMed ID: 8430949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hypoxia on the pharmacological responsiveness of isolated coronary artery rings from the sheep.
    Kwan YW; Wadsworth RM; Kane KA
    Br J Pharmacol; 1989 Apr; 96(4):849-56. PubMed ID: 2743080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of G(s) proteins in hypoxic constriction of sheep pulmonary artery rings.
    Uzun O; Demiryürek AT; Kanzik I
    Pharmacology; 2002 Apr; 64(4):214-6. PubMed ID: 11893903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hypoxia on isolated intrapulmonary arteries from the sheep.
    Demiryurek AT; Wadsworth RM; Kane KA
    Pulm Pharmacol; 1991; 4(3):158-64. PubMed ID: 1821174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear factor-kappaB inhibitors abolish hypoxic vasoconstriction in sheep-isolated pulmonary arteries.
    Uzun O; Demiryürek AT
    Eur J Pharmacol; 2003 Jan; 458(1-2):171-4. PubMed ID: 12498922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia- and endothelium-mediated changes in the pharmacological responsiveness of circumflex coronary artery rings from the sheep.
    Kwan YW; Wadsworth RM; Kane KA
    Br J Pharmacol; 1989 Apr; 96(4):857-63. PubMed ID: 2472846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halothane differentially decreases 5-hydroxytryptamine-induced contractions in normal and chronic hypoxic rat pulmonary arteries.
    De Crescenzo V; Dubuis E; Constantin S; Rebocho M; Girardin C; Bonnet P; Vandier C
    Acta Physiol Scand; 2001 Nov; 173(3):247-55. PubMed ID: 11736687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical involvement in endothelium-dependent responses of the rat thoracic aorta in moderate hypoxic conditions.
    Saïag B; Shacoori V; Bodin P; Pape D; Allain H; Burnstock G
    Eur J Pharmacol; 1999 May; 372(1):57-63. PubMed ID: 10374715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of NO and prostaglandins in acute hypoxic vasoconstriction in sheep pulmonary veins.
    Uzun O; Demiryurek AT
    Pharmacology; 2006; 77(3):122-9. PubMed ID: 16717478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat.
    Robertson TP; Hague D; Aaronson PI; Ward JP
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):669-80. PubMed ID: 10856120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-derived nitric oxide-dependent response to hypoxia in piglet intrapulmonary arteries.
    Villamor E; Ruiz T; Pérez-Vizcaíno F; Tamargo J; Moro M
    Biol Neonate; 1997; 72(1):62-70. PubMed ID: 9313836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased contractile response to 5-hydroxytryptamine1-receptor stimulation in pulmonary arteries from chronic hypoxic rats: role of pharmacological synergy.
    MacLean MR; Morecroft I
    Br J Pharmacol; 2001 Oct; 134(3):614-20. PubMed ID: 11588116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-adrenergic antagonists influence abdominal aorta contractility by mechanisms not involving β-adrenergic receptors.
    Hauzer W; Bujok J; Czerski A; Rusiecka A; Pecka E; Gnus J; Zawadzki W; Witkiewicz W
    Folia Biol (Krakow); 2014; 62(3):243-50. PubMed ID: 25403077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of the ischaemic-induced contraction in the sheep circumflex coronary artery by various pharmacological antagonists.
    Kwan YW; Wadsworth RM; Kane KA
    Br J Pharmacol; 1990 Jul; 100(3):407-12. PubMed ID: 2390668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contraction followed by relaxation in response to hypoxia in the sheep isolated middle cerebral artery.
    Klaas M; Wadsworth R
    Eur J Pharmacol; 1989 Sep; 168(2):187-92. PubMed ID: 2514107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of tyrosine kinase pathway in acute hypoxic vasoconstriction in sheep isolated pulmonary vein.
    Uzun O; Tuncay Demiryürek A
    Vascul Pharmacol; 2003 Oct; 40(3):175-81. PubMed ID: 13678650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery.
    Jabr RI; Toland H; Gelband CH; Wang XX; Hume JR
    Br J Pharmacol; 1997 Sep; 122(1):21-30. PubMed ID: 9298524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of regional phentolamine on hypoxic vasodilatation in healthy humans.
    Weisbrod CJ; Minson CT; Joyner MJ; Halliwill JR
    J Physiol; 2001 Dec; 537(Pt 2):613-21. PubMed ID: 11731591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.