These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 16867978)

  • 1. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding.
    Anders A; Lilie H; Franke K; Kapp L; Stelling J; Gilles ED; Breunig KD
    J Biol Chem; 2006 Sep; 281(39):29337-48. PubMed ID: 16867978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Peng G; Bewley M; Pilauri V; Ropson I; Hopper JE
    Genetics; 2006 Jan; 172(1):77-87. PubMed ID: 16219783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species.
    Sood V; Brickner JH
    Curr Biol; 2017 Dec; 27(23):3591-3602.e3. PubMed ID: 29153325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling transcription factor expression and activity enables dimmer switch gene regulation.
    Ricci-Tam C; Ben-Zion I; Wang J; Palme J; Li A; Savir Y; Springer M
    Science; 2021 Apr; 372(6539):292-295. PubMed ID: 33859035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor clusters enable target search but do not contribute to target gene activation.
    Meeussen JVW; Pomp W; Brouwer I; de Jonge WJ; Patel HP; Lenstra TL
    Nucleic Acids Res; 2023 Jun; 51(11):5449-5468. PubMed ID: 36987884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-size regulation in budding yeast does not depend on linear accumulation of Whi5.
    Barber F; Amir A; Murray AW
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14243-14250. PubMed ID: 32518113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient balancing selection maintains incompatible versions of the galactose pathway in yeast.
    Boocock J; Sadhu MJ; Durvasula A; Bloom JS; Kruglyak L
    Science; 2021 Jan; 371(6527):415-419. PubMed ID: 33479156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A drug stabilizable GAL80
    Kogenaru V; Isalan M; Kogenaru M
    Sci Rep; 2024 Mar; 14(1):5893. PubMed ID: 38467687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. split-intein Gal4 provides intersectional genetic labeling that is fully repressible by Gal80.
    Ewen-Campen B; Luan H; Xu J; Singh R; Joshi N; Thakkar T; Berger B; White BH; Perrimon N
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds.
    Williams BA; Diehnelt CW; Belcher P; Greving M; Woodbury NW; Johnston SA; Chaput JC
    J Am Chem Soc; 2009 Dec; 131(47):17233-41. PubMed ID: 19894711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up.
    Madhavan A; Arun KB; Sindhu R; Krishnamoorthy J; Reshmy R; Sirohi R; Pugazhendi A; Awasthi MK; Szakacs G; Binod P
    Microb Cell Fact; 2021 Jun; 20(1):124. PubMed ID: 34193127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A double role of the Gal80 N terminus in activation of transcription by Gal4p.
    Reinhardt-Tews A; Krutyhołowa R; Günzel C; Roehl C; Glatt S; Breunig KD
    Life Sci Alliance; 2020 Dec; 3(12):. PubMed ID: 33037058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Expanding Landscape of Moonlighting Proteins in Yeasts.
    Gancedo C; Flores CL; Gancedo JM
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):765-77. PubMed ID: 27466281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis.
    Krijger JJ; Baumann J; Wagner M; Schulze K; Reinsch C; Klose T; Onuma OF; Simon C; Behrens SE; Breunig KD
    Microb Cell Fact; 2012 Aug; 11():112. PubMed ID: 22905717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic analysis of the KlGAL regulatory system in Kluyveromyces lactis: a comparative study with Saccharomyces cerevisiae.
    Pannala VR; Ahammed Sherief KY; Bhartiya S; Venkatesh KV
    Syst Synth Biol; 2011 Jun; 5(1-2):69-85. PubMed ID: 22654995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution.
    Hsu C; Scherrer S; Buetti-Dinh A; Ratna P; Pizzolato J; Jaquet V; Becskei A
    Nat Commun; 2012 Feb; 3():682. PubMed ID: 22353713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the evolution of a classic genetic switch.
    Josephides C; Moses AM
    BMC Syst Biol; 2011 Feb; 5():24. PubMed ID: 21294912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast.
    Marucci L; Santini S; di Bernardo M; di Bernardo D
    J Math Biol; 2011 May; 62(5):685-706. PubMed ID: 20549211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae.
    Wightman R; Bell R; Reece RJ
    Eukaryot Cell; 2008 Dec; 7(12):2061-8. PubMed ID: 18952899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.