These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 16868000)
21. Inheritance of the light intensity response in spring cultivars of common wheat. Evtushenko EV; Chekurov VM Hereditas; 2004; 141(3):288-92. PubMed ID: 15703045 [TBL] [Abstract][Full Text] [Related]
22. [Inheritance of heading date in crosses of wheat cultivar responsiveness to light intensity]. Faĭt VI; Stel'makh AF Tsitol Genet; 2004; 38(2):3-8. PubMed ID: 15131962 [TBL] [Abstract][Full Text] [Related]
23. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Kane NA; Agharbaoui Z; Diallo AO; Adam H; Tominaga Y; Ouellet F; Sarhan F Plant J; 2007 Aug; 51(4):670-80. PubMed ID: 17587304 [TBL] [Abstract][Full Text] [Related]
24. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Shaw LM; Turner AS; Laurie DA Plant J; 2012 Jul; 71(1):71-84. PubMed ID: 22372488 [TBL] [Abstract][Full Text] [Related]
25. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis. Scarcelli N; Kover PX Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844 [TBL] [Abstract][Full Text] [Related]
26. Ecological genomics of natural plant populations: the Israeli perspective. Nevo E Methods Mol Biol; 2009; 513():321-44. PubMed ID: 19347652 [TBL] [Abstract][Full Text] [Related]
27. Long day plants and the response to global warming: rapid evolutionary change in day length sensitivity is possible in wild beet. Van Dijk H; Hautekèete N J Evol Biol; 2007 Jan; 20(1):349-57. PubMed ID: 17210028 [TBL] [Abstract][Full Text] [Related]
28. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
29. Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Lefèvre F; Fady B; Fallour-Rubio D; Ghosn D; Bariteau M Heredity (Edinb); 2004 Dec; 93(6):542-50. PubMed ID: 15316555 [TBL] [Abstract][Full Text] [Related]
30. Climatic and temporal effects on the expression of secondary sexual characters: genetic and environmental components. Garant D; Sheldon BC; Gustafsson L Evolution; 2004 Mar; 58(3):634-44. PubMed ID: 15119446 [TBL] [Abstract][Full Text] [Related]
31. [A mechanistic model of phasic and phenological development of wheat. I. Assumption and description of the model]. Yan M; Cao W; Luo W; Jiang H Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):355-9. PubMed ID: 11767631 [TBL] [Abstract][Full Text] [Related]
32. [The genetic control of heading time in wheat]. Wang JG; Sun BQ; Huang YZ Yi Chuan; 2002 Mar; 24(2):193-6. PubMed ID: 16118141 [TBL] [Abstract][Full Text] [Related]
33. Long-Term In Situ Conservation Drove Microevolution of Solina d'Abruzzo Wheat on Adaptive, Agronomic and Qualitative Traits. Morcia C; De Flaviis R; Terzi V; Gasparelli ME; Ghizzoni R; Badeck FW; Rizza F; Santarelli V; Tumino G; Sacchetti G Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36986994 [TBL] [Abstract][Full Text] [Related]
34. Evolutionary Plant Breeding as a Response to the Complexity of Climate Change. Ceccarelli S; Grando S iScience; 2020 Dec; 23(12):101815. PubMed ID: 33305179 [TBL] [Abstract][Full Text] [Related]
35. A method for obtaining flexible broccoli varieties for sustainable agriculture. Ciancaleoni S; Negri V BMC Genet; 2020 May; 21(1):51. PubMed ID: 32380956 [TBL] [Abstract][Full Text] [Related]
36. Efficiently tracking selection in a multiparental population: the case of earliness in wheat. Thépot S; Restoux G; Goldringer I; Hospital F; Gouache D; Mackay I; Enjalbert J Genetics; 2015 Feb; 199(2):609-23. PubMed ID: 25406468 [TBL] [Abstract][Full Text] [Related]
37. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Thomas M; Demeulenaere E; Dawson JC; Khan AR; Galic N; Jouanne-Pin S; Remoue C; Bonneuil C; Goldringer I Evol Appl; 2012 Dec; 5(8):779-95. PubMed ID: 23346224 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Le Gouis J; Bordes J; Ravel C; Heumez E; Faure S; Praud S; Galic N; Remoué C; Balfourier F; Allard V; Rousset M Theor Appl Genet; 2012 Feb; 124(3):597-611. PubMed ID: 22065067 [TBL] [Abstract][Full Text] [Related]
39. Estimation of mating system parameters in an evolving gynodioecous population of cultivated sunflower (Helianthus annuus L.). Roumet M; Ostrowski MF; David J; Tollon C; Muller MH Heredity (Edinb); 2012 Apr; 108(4):366-74. PubMed ID: 21915147 [TBL] [Abstract][Full Text] [Related]
40. Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Rousset M; Bonnin I; Remoué C; Falque M; Rhoné B; Veyrieras JB; Madur D; Murigneux A; Balfourier F; Le Gouis J; Santoni S; Goldringer I Theor Appl Genet; 2011 Oct; 123(6):907-26. PubMed ID: 21761163 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]