These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 16868045)

  • 1. Ripening grape berries remain hydraulically connected to the shoot.
    Keller M; Smith JP; Bondada BR
    J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional xylem in the post-veraison grape berry.
    Bondada BR; Matthews MA; Shackel KA
    J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.
    Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR
    Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development.
    Krasnow M; Matthews M; Shackel K
    J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries.
    Bindon KA; Dry PR; Loveys BR
    J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits.
    Thomas TR; Matthews MA; Shackel KA
    Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vivo experimental system to study sugar phloem unloading in ripening grape berries during water deficiency stress.
    Wang ZP; Deloire A; Carbonneau A; Federspiel B; Lopez F
    Ann Bot; 2003 Oct; 92(4):523-8. PubMed ID: 12907466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grape berry plasma membrane proteome analysis and its differential expression during ripening.
    Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S
    J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation.
    Davies C; Shin R; Liu W; Thomas MR; Schachtman DP
    J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase.
    Chervin C; Tira-Umphon A; Terrier N; Zouine M; Severac D; Roustan JP
    Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries.
    Chatelet DS; Rost TL; Shackel KA; Matthews MA
    J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of rachis cell viability is associated with ripening disorders in grapes.
    Hall GE; Bondada BR; Keller M
    J Exp Bot; 2011 Jan; 62(3):1145-53. PubMed ID: 21071679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute accumulation differs in the vacuoles and apoplast of ripening grape berries.
    Keller M; Shrestha PM
    Planta; 2014 Mar; 239(3):633-42. PubMed ID: 24310282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening.
    Hanana M; Cagnac O; Yamaguchi T; Hamdi S; Ghorbel A; Blumwald E
    Plant Cell Physiol; 2007 Jun; 48(6):804-11. PubMed ID: 17463051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and epsilon-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius.
    Bavaresco L; Vezzulli S; Civardi S; Gatti M; Battilani P; Pietri A; Ferrari F
    J Agric Food Chem; 2008 Mar; 56(6):2085-9. PubMed ID: 18290620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism.
    Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R
    J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues.
    Hayes MA; Davies C; Dry IB
    J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries.
    Koch A; Ebeler SE; Williams LE; Matthews MA
    Physiol Plant; 2012 Jun; 145(2):275-85. PubMed ID: 22224579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a method for the extraction and quantification of carotenoids and chlorophylls during ripening in grape berries (Vitis vinifera cv. Merlot).
    Kamffer Z; Bindon KA; Oberholster A
    J Agric Food Chem; 2010 Jun; 58(11):6578-86. PubMed ID: 20450155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.