BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16868073)

  • 1. Kidney collecting duct acid-base "regulon".
    Cheval L; Morla L; Elalouf JM; Doucet A
    Physiol Genomics; 2006 Nov; 27(3):271-81. PubMed ID: 16868073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of mouse renal collecting duct in response to potassium depletion.
    Cheval L; Duong Van Huyen JP; Bruneval P; Verbavatz JM; Elalouf JM; Doucet A
    Physiol Genomics; 2004 Sep; 19(1):61-73. PubMed ID: 15238618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis.
    Nowik M; Lecca MR; Velic A; Rehrauer H; Brändli AW; Wagner CA
    Physiol Genomics; 2008 Feb; 32(3):322-34. PubMed ID: 18056784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins.
    Mohebbi N; Mihailova M; Wagner CA
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F499-509. PubMed ID: 19439519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions.
    Nakamura S
    J Lab Clin Med; 2006 Jan; 147(1):45-51. PubMed ID: 16443004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct.
    Rothenberger F; Velic A; Stehberger PA; Kovacikova J; Wagner CA
    J Am Soc Nephrol; 2007 Jul; 18(7):2085-93. PubMed ID: 17561490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-base transport in the collecting duct.
    Wagner CA; Geibel JP
    J Nephrol; 2002; 15 Suppl 5():S112-27. PubMed ID: 12027210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base transport in the collecting duct.
    Hamm LL; Hering-Smith KS
    Semin Nephrol; 1993 Mar; 13(2):246-55. PubMed ID: 7682001
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic acidosis stimulates H+ secretion in the rabbit outer medullary collecting duct (inner stripe) of the kidney.
    Tsuruoka S; Schwartz GJ
    J Clin Invest; 1997 Mar; 99(6):1420-31. PubMed ID: 9077552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diseases of acid-base transporters.
    Alper SL
    Annu Rev Physiol; 2002; 64():899-923. PubMed ID: 11826292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar H+ -ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells.
    Yang Q; Li G; Singh SK; Alexander EA; Schwartz JH
    J Am Soc Nephrol; 2006 Jul; 17(7):1858-66. PubMed ID: 16769747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hereditary distal renal tubular acidosis: new understandings.
    Batlle D; Ghanekar H; Jain S; Mitra A
    Annu Rev Med; 2001; 52():471-84. PubMed ID: 11160790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial pure proximal renal tubular acidosis--a clinical and genetic study.
    Katzir Z; Dinour D; Reznik-Wolf H; Nissenkorn A; Holtzman E
    Nephrol Dial Transplant; 2008 Apr; 23(4):1211-5. PubMed ID: 17881426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis.
    Stehberger PA; Schulz N; Finberg KE; Karet FE; Giebisch G; Lifton RP; Geibel JP; Wagner CA
    J Am Soc Nephrol; 2003 Dec; 14(12):3027-38. PubMed ID: 14638902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted deletion of the Ncoa7 gene results in incomplete distal renal tubular acidosis in mice.
    Merkulova M; Păunescu TG; Nair AV; Wang CY; Capen DE; Oliver PL; Breton S; Brown D
    Am J Physiol Renal Physiol; 2018 Jul; 315(1):F173-F185. PubMed ID: 29384414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal tubular acidosis: developments in our understanding of the molecular basis.
    Laing CM; Toye AM; Capasso G; Unwin RJ
    Int J Biochem Cell Biol; 2005 Jun; 37(6):1151-61. PubMed ID: 15778079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of basolateral Cl-/HCO3- exchangers SLC26A7 and AE1 in kidney outer medullary collecting duct.
    Barone S; Amlal H; Xu J; Kujala M; Kere J; Petrovic S; Soleimani M
    J Am Soc Nephrol; 2004 Aug; 15(8):2002-11. PubMed ID: 15284286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation by the collecting duct to an exogenous acid load is blunted by deletion of the proton-sensing receptor GPR4.
    Sun X; Stephens L; DuBose TD; Petrovic S
    Am J Physiol Renal Physiol; 2015 Jul; 309(2):F120-36. PubMed ID: 25972512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ANG II reduces net acid secretion in rat outer medullary collecting duct.
    Wall SM; Fischer MP; Glapion DM; De La Calzada M
    Am J Physiol Renal Physiol; 2003 Nov; 285(5):F930-7. PubMed ID: 12851254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation channels of the rabbit outer medullary collecting duct.
    Xia SL; Gelband CH; Wingo CS
    Semin Nephrol; 1999 Sep; 19(5):472-6. PubMed ID: 10511386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.