These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16868645)

  • 21. Experience with a programmable valve shunt system.
    Yamashita N; Kamiya K; Yamada K
    J Neurosurg; 1999 Jul; 91(1):26-31. PubMed ID: 10389876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable shunt valves for the treatment of hydrocephalus: a systematic review.
    Xu H; Wang ZX; Liu F; Tan GW; Zhu HW; Chen DH
    Eur J Paediatr Neurol; 2013 Sep; 17(5):454-61. PubMed ID: 23830575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Withdrawal of shunt systems--clinical use of the programmable shunt system and its effect on hydrocephalus in children.
    Takahashi Y
    Childs Nerv Syst; 2001 Aug; 17(8):472-7. PubMed ID: 11508536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications.
    Reinprecht A; Dietrich W; Berger A; Bavinzski G; Weninger M; Czech T
    Childs Nerv Syst; 2001 Nov; 17(11):663-9. PubMed ID: 11734984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The importance of hydrostatic valves in the treatment of adult chronic hydrocephalus].
    MascarĂ³s V; Eymann R; Marco J; Kiefer M
    Neurologia; 2001 May; 16(5):204-13. PubMed ID: 11412719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Risk of rebleeding after treatment of acute hydrocephalus in patients with aneurysmal subarachnoid hemorrhage.
    Hellingman CA; van den Bergh WM; Beijer IS; van Dijk GW; Algra A; van Gijn J; Rinkel GJ
    Stroke; 2007 Jan; 38(1):96-9. PubMed ID: 17122426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delayed pneumocephalus following shunting for hydrocephalus.
    Honeybul S; Bala A
    J Clin Neurosci; 2006 Nov; 13(9):939-42. PubMed ID: 17049242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ventriculoperitoneal shunts with the use of pressure-adjustable valve in the management of hydrocephalus].
    Kikuchi K; Kowada M; Sasaki J; Watanabe K; Sasajima H; Yoneya M
    No Shinkei Geka; 1990 Mar; 18(3):241-6. PubMed ID: 2359473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of vagus nerve stimulator magnet on programmable shunt settings.
    Jandial R; Aryan HE; Hughes SA; Levy ML
    Neurosurgery; 2004 Sep; 55(3):627-9; discussion 629-30. PubMed ID: 15335429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occlusive hydrocephalus in congenital myotonic dystrophy.
    Rettwitz-Volk W; Wikstroem M; Flodmark O
    Brain Dev; 2001 Mar; 23(2):122-4. PubMed ID: 11248461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of programmable versus nonprogrammable shunts in the management of hydrocephalus secondary to aneurysmal subarachnoid hemorrhage: a retrospective study with cost-benefit analysis.
    Lee L; King NK; Kumar D; Ng YP; Rao J; Ng H; Lee KK; Wang E; Ng I
    J Neurosurg; 2014 Oct; 121(4):899-903. PubMed ID: 24745705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Efficacy and some complications of programmable pressure valve].
    Yonezawa K; Fujita S; Syose Y; Hosoda K; Kawaguchi T
    No Shinkei Geka; 1991 Jun; 19(6):539-45. PubMed ID: 1881523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system.
    Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y
    Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting.
    Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A
    Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The combination of a programmable valve and a subclavicular anti-gravity device in hydrocephalus patients at high risk for hygromas.
    Zachenhofer I; Donat M; Roessler K
    Neurol Res; 2012 Apr; 34(3):219-22. PubMed ID: 22333990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Care and management of the child with shunted hydrocephalus.
    Chiafery M
    Pediatr Nurs; 2006; 32(3):222-5. PubMed ID: 16802679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.