These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 16868746)
1. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. Bell JA; Volpi E; Fujita S; Cadenas JG; Rasmussen BB Diabetologia; 2006 Sep; 49(9):2144-52. PubMed ID: 16868746 [TBL] [Abstract][Full Text] [Related]
2. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691 [TBL] [Abstract][Full Text] [Related]
3. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. Båvenholm PN; Kuhl J; Pigon J; Saha AK; Ruderman NB; Efendic S J Clin Endocrinol Metab; 2003 Jan; 88(1):82-7. PubMed ID: 12519834 [TBL] [Abstract][Full Text] [Related]
4. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Rasmussen BB; Holmbäck UC; Volpi E; Morio-Liondore B; Paddon-Jones D; Wolfe RR J Clin Invest; 2002 Dec; 110(11):1687-93. PubMed ID: 12464674 [TBL] [Abstract][Full Text] [Related]
5. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle. Båvenholm PN; Pigon J; Saha AK; Ruderman NB; Efendic S Diabetes; 2000 Jul; 49(7):1078-83. PubMed ID: 10909961 [TBL] [Abstract][Full Text] [Related]
6. Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil, Psammomys obesus. Shafrir E; Ziv E; Saha AK; Ruderman NB Diabetes Metab Res Rev; 2002; 18(3):217-23. PubMed ID: 12112940 [TBL] [Abstract][Full Text] [Related]
7. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. Beha A; Juretschke HP; Kuhlmann J; Neumann-Haefelin C; Belz U; Gerl M; Kramer W; Roden M; Herling AW Am J Physiol Endocrinol Metab; 2006 May; 290(5):E989-97. PubMed ID: 16380389 [TBL] [Abstract][Full Text] [Related]
8. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Alam N; Saggerson ED Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):233-41. PubMed ID: 9693125 [TBL] [Abstract][Full Text] [Related]
9. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Debard C; Laville M; Berbe V; Loizon E; Guillet C; Morio-Liondore B; Boirie Y; Vidal H Diabetologia; 2004 May; 47(5):917-25. PubMed ID: 15127202 [TBL] [Abstract][Full Text] [Related]
11. Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. Yee AJ; Turcotte LP Am J Physiol Endocrinol Metab; 2002 Jul; 283(1):E73-7. PubMed ID: 12067845 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneity in limb fatty acid kinetics in type 2 diabetes. Sacchetti M; Olsen DB; Saltin B; van Hall G Diabetologia; 2005 May; 48(5):938-45. PubMed ID: 15830181 [TBL] [Abstract][Full Text] [Related]
13. Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. Bruce CR; Anderson MJ; Carey AL; Newman DG; Bonen A; Kriketos AD; Cooney GJ; Hawley JA J Clin Endocrinol Metab; 2003 Nov; 88(11):5444-51. PubMed ID: 14602787 [TBL] [Abstract][Full Text] [Related]
14. Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Wilmsen HM; Ciaraldi TP; Carter L; Reehman N; Mudaliar SR; Henry RR Am J Physiol Endocrinol Metab; 2003 Aug; 285(2):E354-62. PubMed ID: 12700163 [TBL] [Abstract][Full Text] [Related]
15. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454 [TBL] [Abstract][Full Text] [Related]
16. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. Sugden MC; Priestman DA; Orfali KA; Holness MJ Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724 [TBL] [Abstract][Full Text] [Related]
17. Effect of glucose infusion on muscle malonyl-CoA during exercise. Elayan IM; Winder WW J Appl Physiol (1985); 1991 Apr; 70(4):1495-9. PubMed ID: 2055826 [TBL] [Abstract][Full Text] [Related]
18. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889 [TBL] [Abstract][Full Text] [Related]
19. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. Onay-Besikci A; Sambandam N Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986 [TBL] [Abstract][Full Text] [Related]
20. Insulin signalling in skeletal muscle of subjects with or without Type II-diabetes and first degree relatives of patients with the disease. Meyer MM; Levin K; Grimmsmann T; Beck-Nielsen H; Klein HH Diabetologia; 2002 Jun; 45(6):813-22. PubMed ID: 12107725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]