These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16868962)

  • 1. Noninvasive monitoring of chest wall movement in infants using laser.
    Kondo T; Minocchieri S; Baldwin DN; Nelle M; Frey U
    Pediatr Pulmonol; 2006 Oct; 41(10):985-92. PubMed ID: 16868962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.
    Lee LJ; Chang AT; Coppieters MW; Hodges PW
    Respir Physiol Neurobiol; 2010 Mar; 170(3):236-45. PubMed ID: 20083236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase characteristics of breathing movements in healthy newborns.
    Andersson D; Gennser G; Johnson P
    J Dev Physiol; 1983 Oct; 5(5):289-98. PubMed ID: 6227654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of the abdominal and chest wall position by voluntary breath-hold technique using a laser-based monitoring and visual feedback system.
    Nakamura K; Shioyama Y; Nomoto S; Ohga S; Toba T; Yoshitake T; Anai S; Terashima H; Honda H
    Int J Radiat Oncol Biol Phys; 2007 May; 68(1):267-72. PubMed ID: 17448879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of carbon dioxide inhalation on phase characteristics of breathing movements in healthy newborn infants.
    Andersson D; Gennser G; Johnson P
    J Dev Physiol; 1986 Jun; 8(3):147-57. PubMed ID: 3091674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chest wall motion in neonates utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    J Perinatol; 1994; 14(2):101-5. PubMed ID: 8014690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.
    Habib RH; Pyon KH; Courtney SE; Aghai ZH
    J Appl Physiol (1985); 2003 May; 94(5):1933-40. PubMed ID: 12524380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring tidal breathing parameters using a volumetric vest in neonates with and without lung disease.
    Olden C; Symes E; Seddon P
    Pediatr Pulmonol; 2010 Nov; 45(11):1070-5. PubMed ID: 20872815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rib cage motion in ankylosing spondylitis patients: a pilot study.
    Ragnarsdottir M; Geirsson AJ; Gudbjornsson B
    Spine J; 2008; 8(3):505-9. PubMed ID: 18455114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory induction plethysmography (Respitrace): an evaluation of its use in the infant.
    Duffty P; Spriet L; Bryan MH; Bryan AC
    Am Rev Respir Dis; 1981 May; 123(5):542-6. PubMed ID: 7235376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of tidal volume and gas leak during mask ventilation of preterm infants in the delivery room.
    Schmölzer GM; Kamlin OC; O'Donnell CP; Dawson JA; Morley CJ; Davis PG
    Arch Dis Child Fetal Neonatal Ed; 2010 Nov; 95(6):F393-7. PubMed ID: 20547584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scope of linear estimators of tidal and occluded volumes using thoracoabdominal indications of breathing movement coordination.
    Millard RK; Black AM
    Med Eng Phys; 2004 Apr; 26(3):225-35. PubMed ID: 14984844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occlusion maneuver to detect the relative contribution of the rib cage and abdomen to tidal volume using respiratory inductive plethysmography in infants.
    Gagliardi L; Rusconi F; Aston H; Silverman M
    Pediatr Pulmonol; 1996 Feb; 21(2):132-7. PubMed ID: 8882215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of chest wall volume variation during tidal breathing in the supine and lateral positions in healthy subjects.
    Nozoe M; Mase K; Takashima S; Matsushita K; Kouyama Y; Hashizume H; Kawasaki Y; Uchiyama Y; Yamamoto N; Fukuda Y; Domen K
    Respir Physiol Neurobiol; 2014 Mar; 193():38-42. PubMed ID: 24418356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of respiratory tidal volume estimation by means of ambulatory inductive plethysmography.
    Grossman P; Spoerle M; Wilhelm FH
    Biomed Sci Instrum; 2006; 42():193-8. PubMed ID: 16817607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chest wall motion after thixotropy conditioning of inspiratory muscles in healthy humans.
    Izumizaki M; Ohshima Y; Iwase M; Homma I
    J Physiol Sci; 2006 Dec; 56(6):433-40. PubMed ID: 17129397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal chest wall suspension splint: a novel and noninvasive method for support of lung volume.
    Miller TL; Palmer C; Shaffer TH; Wolfson MR
    Pediatr Pulmonol; 2005 Jun; 39(6):512-20. PubMed ID: 15678504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tidal volume measurements in infants: Opto-electronic plethysmography versus pneumotachograph.
    Reinaux CM; Aliverti A; da Silva LG; da Silva RJ; Gonçalves JN; Noronha JB; Filho JE; de Andrade AD; de Amorim Britto MC
    Pediatr Pulmonol; 2016 Aug; 51(8):850-7. PubMed ID: 26991671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of tidal breathing measurement of FloRight compared to an ultrasonic flowmeter in infants.
    Petrus NC; Thamrin C; Fuchs O; Frey U
    Pediatr Pulmonol; 2015 Apr; 50(4):380-8. PubMed ID: 24574092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional distribution of chest wall displacements in infants during high-frequency ventilation.
    Zannin E; Ventura ML; Dognini G; Veneroni C; Pillow JJ; Tagliabue PE; Dellacà RL
    J Appl Physiol (1985); 2019 Apr; 126(4):928-933. PubMed ID: 30730808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.