These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16869421)

  • 1. GIS-based niche modeling for mapping species' habitat.
    Rotenberry JT; Preston KL; Knick ST
    Ecology; 2006 Jun; 87(6):1458-64. PubMed ID: 16869421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing recent dispersal from historical genetic connectivity in the coastal California gnatcatcher.
    Vandergast AG; Kus BE; Preston KL; Barr KR
    Sci Rep; 2019 Feb; 9(1):1355. PubMed ID: 30718575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental change, shifting distributions, and habitat conservation plans: A case study of the California gnatcatcher.
    Hulton VanTassel HL; Bell MD; Rotenberry J; Johnson R; Allen MF
    Ecol Evol; 2017 Dec; 7(23):10326-10338. PubMed ID: 29238558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The factorial decomposition of the Mahalanobis distances in habitat selection studies.
    Calenge C; Darmon G; Basille M; Loison A; Jullien JM
    Ecology; 2008 Feb; 89(2):555-66. PubMed ID: 18409444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.
    Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR
    Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Multiple Distribution Models to Guide Conservation Efforts of an Endangered Toad.
    Treglia ML; Fisher RN; Fitzgerald LA
    PLoS One; 2015; 10(6):e0131628. PubMed ID: 26125634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conceptual framework for the colonisation of urban areas: the blackbird Turdus merula as a case study.
    Evans KL; Hatchwell BJ; Parnell M; Gaston KJ
    Biol Rev Camb Philos Soc; 2010 Aug; 85(3):643-67. PubMed ID: 20128785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subspecies differentiation and range-wide genetic structure are driven by climate in the California gnatcatcher, a flagship species for coastal sage scrub conservation.
    Vandergast AG; Kus BE; Wood DA; Milano ER; Preston KL
    Evol Appl; 2022 Jul; 15(7):1201-1217. PubMed ID: 35899257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus).
    Rissler LJ; Apodaca JJ
    Syst Biol; 2007 Dec; 56(6):924-42. PubMed ID: 18066928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference.
    Lauria V; Garofalo G; Gristina M; Fiorentino F
    Mar Environ Res; 2016 Aug; 119():252-66. PubMed ID: 27371813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits.
    Lee-Yaw JA; Kharouba HM; Bontrager M; Mahony C; Csergő AM; Noreen AM; Li Q; Schuster R; Angert AL
    Ecol Lett; 2016 Jun; 19(6):710-22. PubMed ID: 27111656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental species sorting dominates forest-bird community assembly across scales.
    Özkan K; Svenning JC; Jeppesen E
    J Anim Ecol; 2013 Jan; 82(1):266-74. PubMed ID: 22849355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general framework for the statistical exploration of the ecological niche.
    Calenge C; Basille M
    J Theor Biol; 2008 Jun; 252(4):674-85. PubMed ID: 18397793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.
    Radinger J; Wolter C; Kail J
    PLoS One; 2015; 10(11):e0142813. PubMed ID: 26569119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range bagging: a new method for ecological niche modelling from presence-only data.
    Drake JM
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25948612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foraging ecology of the California gnatcatcher deduced from fecal samples.
    Burger JC; Patten MA; Rotenberry JT; Redak RA
    Oecologia; 1999 Aug; 120(2):304-310. PubMed ID: 28308093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process-based modeling of species' distributions: what limits temperate tree species' range boundaries?
    Morin X; Augspurger C; Chuine I
    Ecology; 2007 Sep; 88(9):2280-91. PubMed ID: 17918406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.
    Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D
    J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species.
    Reif J; Reifová R; Skoracka A; Kuczyński L
    J Anim Ecol; 2018 May; 87(3):774-789. PubMed ID: 29430650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning beta diversity in a subtropical broad-leaved forest of China.
    Legendre P; Mi X; Ren H; Ma K; Yu M; Sun IF; He F
    Ecology; 2009 Mar; 90(3):663-74. PubMed ID: 19341137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.