These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16869570)

  • 1. High dielectric hyperbranched polyaniline materials.
    Yan XZ; Goodson T
    J Phys Chem B; 2006 Aug; 110(30):14667-72. PubMed ID: 16869570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency dielectric response in a branched phthalocyanine.
    Guo M; Yan X; Kwon Y; Hayakawa T; Kakimoto MA; Goodson T
    J Am Chem Soc; 2006 Nov; 128(46):14820-1. PubMed ID: 17105288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
    Nakanishi M; Sasaki Y; Nozaki R
    Rev Sci Instrum; 2010 Dec; 81(12):123902. PubMed ID: 21198035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic macromolecular high dielectric constant materials: synthesis, characterization, and applications.
    Guo M; Hayakawa T; Kakimoto MA; Goodson T
    J Phys Chem B; 2011 Nov; 115(46):13419-32. PubMed ID: 21950561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbranched ferrocenyl polymer film with high charge transport efficiency.
    Huo J; Wang L; Yu H; Deng L; Ding J; Tan Q; Liu Q; Xiao A; Ren G
    J Phys Chem B; 2008 Sep; 112(37):11490-7. PubMed ID: 18717542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New ceramic EPR resonators with high dielectric permittivity.
    Golovina I; Geifman I; Belous A
    J Magn Reson; 2008 Nov; 195(1):52-9. PubMed ID: 18815061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric and shear mechanical relaxations in glass-forming liquids: a test of the Gemant-DiMarzio-Bishop model.
    Niss K; Jakobsen B; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234510. PubMed ID: 16392934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode.
    Yakuphanoglu F; Basaran E; Senkal BF; Sezer E
    J Phys Chem B; 2006 Aug; 110(34):16908-13. PubMed ID: 16927980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-capacitance organic nanodielectrics: effective medium models of their response.
    DiBenedetto SA; Paci I; Facchetti A; Marks TJ; Ratner MA
    J Phys Chem B; 2006 Nov; 110(45):22394-9. PubMed ID: 17091980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sensors based on conductivity changes in polyaniline nanofibers.
    Virji S; Kaner RB; Weiller BH
    J Phys Chem B; 2006 Nov; 110(44):22266-70. PubMed ID: 17078668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection.
    Thibierge C; L'Hôte D; Ladieu F; Tourbot R
    Rev Sci Instrum; 2008 Oct; 79(10):103905. PubMed ID: 19044727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of hybrid film of polyaniline and organically pillared zirconium phosphate nanosheet by electrodeposition.
    Takei T; Dong Q; Yonesaki Y; Kumada N; Kinomura N
    Langmuir; 2011 Jan; 27(1):126-31. PubMed ID: 21133349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured polyaniline sensors.
    Huang J; Virji S; Weiller BH; Kaner RB
    Chemistry; 2004 Mar; 10(6):1314-9. PubMed ID: 15034876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications.
    Li D; Huang J; Kaner RB
    Acc Chem Res; 2009 Jan; 42(1):135-45. PubMed ID: 18986177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of some random-barrier, continuous-time random-walk, and other models for the analysis of wide-range frequency response of ion-conducting materials.
    Macdonald JR
    J Phys Chem B; 2009 Jul; 113(27):9175-82. PubMed ID: 19526997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenol assisted deaggregation of polyaniline chains: simple route to high quality polyaniline film.
    Wu CG; Chiang CH; Jeng US
    J Phys Chem B; 2008 Jun; 112(22):6772-8. PubMed ID: 18461989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes.
    Di Noto V; Gliubizzi R; Negro E; Pace G
    J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.
    Garcia-Bernabé A; Dominguez-Espinosa G; Diaz-Calleja R; Riande E; Haag R
    J Chem Phys; 2007 Sep; 127(12):124904. PubMed ID: 17902934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro electrical impedance spectroscopy of human dentine: the effect of restorative materials.
    Rivas B; Botta PM; Varela P; Martín B; Fondado A; Rivas J
    Bioelectromagnetics; 2008 Apr; 29(3):163-8. PubMed ID: 18027842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyaniline/layered zirconium phosphate nanocomposites: secondary-like doped polyaniline obtained by the layer-by-layer technique.
    Izumi CM; Constantino VR; Temperini ML
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1782-9. PubMed ID: 18572578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.